Uneingeschränkter Zugang

Optical investigation of bovine grey and white matters in visible and near-infrared ranges


Zitieren

1. Eggert H R, Blazek V. Optical properties of human brain tissue, meninges and brain tumors in the spectral range of 200 to 900nm. Neurosurgery. 1987;21 (4):459-464. https://doi.org/10.1227/00006123-198710000-0000310.1227/00006123-198710000-00003 Search in Google Scholar

2. Taddeucci A, Martelli F, Barilli M, Ferrari M, Zaccanti G. Optical properties of brain tissue. J Biomed Opt. 1996;1(1):117-123. https://doi.org/10.1117/12.22781610.1117/12.227816 Search in Google Scholar

3. Sandell J, Zhu T. A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics. 2011;4(11):773-787. https://doi.org/10.1002/jbio.20110006210.1002/jbio.201100062 Search in Google Scholar

4. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37-R61. https://doi.org/10.1088/0031-9155/58/11/R3710.1088/0031-9155/58/11/R37 Search in Google Scholar

5. Holmer C, Lehmann K, Wanken J, et al. Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction. J Biomed Opt. 2007;12(1):014025-1-8. https://doi.org/10.1117/1.256479310.1117/1.2564793 Search in Google Scholar

6. Lin WC, Toms SA, Johnson M, Jansen ED, Mahadevan-Jansen A. In vivo brain tumor demarcation using optical spectroscopy. J Photochem Photobiol. 2001;73:396-402. https://doi.org/10.1562/0031-8655(2001)0730396IVBTDU2.0.CO210.1562/0031-8655(2001)0730396IVBTDU2.0.CO2 Search in Google Scholar

7. Mourant JR, Freyer JR, Hielscher AH, Eick AA, Shen D, Johnson TM. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Opt. 1998;37:3586-3593. https://doi.org/10.1364/ao.37.00358610.1364/AO.37.00358618273328 Search in Google Scholar

8. Salomatina EV, Jiang B, Novak J, Yaroslavsky A. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J Biomed Opt. 2006;11(6):064026-1-9. https://doi.org/10.1117/1.239892810.1117/1.239892817212549 Search in Google Scholar

9. Honda N, Ishii K, Kajjmoto Y, Awazu K. Determination of optical properties of human brain tumor tissues from 350 to 1000nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid. J Biomed Opt. 2018;23(7):075006. https://doi.org/10.1117/1.JBO.23.7.07500610.1117/1.JBO.23.7.07500630006993 Search in Google Scholar

10. Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C. In vivo local determination of tissue optical properties: applications to human brain. Appl Opt. 1999;38:4939-50. https://doi.org/10.1364/ao.38.00493910.1364/AO.38.004939 Search in Google Scholar

11. Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier H-J. Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near Infrared spectral range. Phys Med Biol. 2002;47:2059-2073. https://doi.org/10.1088/0031-9155/47/12/30510.1088/0031-9155/47/12/305 Search in Google Scholar

12. Gebhart SC, Lin WC, Mahadevan-Jansen A. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys Med Biol. 2006;51:2011-2027. https://doi.org/10.1088/0031-9155/51/8/00410.1088/0031-9155/51/8/004 Search in Google Scholar

13. Ozer K, Bozkulak O, Tabakoglu HO, Kurt A, Gulsoy M. Optical properties of native and coagulated lamb brain tissues in vitro in the visible and near-infrared spectral range. In: Jacques S, Roach WP, eds. Optical Interactions with Tissue and Cells XVII. Vol 6084. SPIE;2006:60840P-1-8. https://doi.org/10.1117/12.64607710.1117/12.646077 Search in Google Scholar

14. Azimipour M, Baumgartner R, Liu Y, Jacques SL, Eliceiri K, Pashaie R. Extraction of optical properties and prediction of light distribution in rat brain tissue. J Biomed Opt. 2014;19(7):075001-11. https://doi.org/10.1117/1.JBO.19.7.07500110.1117/1.JBO.19.7.075001 Search in Google Scholar

15. Wood MFG, Vurgun N, Wallenburg MA, Vitkin IA. Effects of formalin fixation on tissue optical polarization properties. Phys Med Biol. 2011;56(8):115-122. https://doi.org/10.1088/0031-9155/56/8/N0110.1088/0031-9155/56/8/N01 Search in Google Scholar

16. Aung H, De Angelo B, Soldano J, Kostyk P, Rodriguez B, Xu M. On alterations in the refractive index and scattering properties of biological tissue caused by histological processing. In: Wax AP, Beckman V, eds. Biomedical Applications of Light Scattering VII. Vol 8592. SPIE;2013:85920X-1-8. https://doi.org/10.1117/12.200592710.1117/12.2005927 Search in Google Scholar

17. Abe M, Takahashi M, Horiuchi K, Nagano A. The changes in crosslink contents in tissue after formalin fixation. Anal Biochem. 2003;318(1):118-123. https://doi.org/10.1016/S0003-2697(03)00194-510.1016/S0003-2697(03)00194-5 Search in Google Scholar

18. Hsiung P-L, Nambiar P, Fujimoto J. Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography. J Biomed Opt. 2005;10(6):064033. https://doi.org/10.1117/1.214715510.1117/1.214715516409098 Search in Google Scholar

19. Pitzschke A, Lovisa B, Seydoux O. et al. Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen and formalin-fixated conditions. J Biomed Opt. 2015:20(2):025006. https://doi.org/10.1117/1.JBO.20.2.02500610.1117/1.JBO.20.2.02500625706688 Search in Google Scholar

20. Anand S, Cicchi R, Martelli F, et al. Effects of formalin fixation on tissue optical properties of in-vitro brain samples. In: Jansen D, ed. Optical Interactions with Tissue and Cells XXVI. Vol 9321. SPIE;2015:93210Z1-5. https://doi.org/10.1117/12.207696110.1117/12.2076961 Search in Google Scholar

21. Wilson BC, Patterson MS, Flock ST. Indirect versus direct techniques for the measurement of the optical properties of tissues. J Photochem Photobiol. 1987;46(55):601-608. https://doi.org/10.1111/j.1751-1097.1987.tb04820.x10.1111/j.1751-1097.1987.tb04820.x3441488 Search in Google Scholar

22. van der Zee P. Measurement and Modelling of the Optical Properties of Human Tissue in the Near Infrared. Ph.D. Dissertation, University of London, London, U.K., 1992. Search in Google Scholar

23. Prahl, S. Light Transport in Tissue. Ph.D. Dissertation, University Texas, Austin, U.S.A., 1988. Search in Google Scholar

24. Roysten D, Poston R, Prahl S. Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064nm. J Biomed Opt. 1996;1(1):110-116. https://doi.org/10.1117/12.22769810.1117/12.22769823014651 Search in Google Scholar

25. Shahin A, Bachir W, Sayem El-Daher M. Polystyrene microsphere optical properties by Kubelka-Munk and diffusion approximation with a single integrating sphere system: a comparative study. J Spec. 2019:3406319. https://doi.org/10.1155/2019/340631910.1155/2019/3406319 Search in Google Scholar

26. Prahl, S. Inverse Adding-Doubling XP version-3-9-5; School of Medicine, Oregon Health and Science University: Portland, 2018. Search in Google Scholar

27. van de Hulst HC. Light Scattering by Small Particles. New York: Dover publication; 1981. Search in Google Scholar

28. Ashoor HE, Jasim Kh E. Determining the optical properties of blood using He-Ne laser and double integrating sphere set-up. Polish J Med Phys Eng. 2019;25(1):1-5. https://doi.org/10.2478/pjmpe-2019-000110.2478/pjmpe-2019-0001 Search in Google Scholar

29. Friebel M, Roggan A, Muller G, Meinke M. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J Biomed Opt. 2006;11(3):034021. https://doi.org/10.1117/1.220365910.1117/1.220365916822070 Search in Google Scholar

30. Lovell AT, Hebden JC, Goldstone LC, Cope M. Determination of the transport scattering coefficient of red blood cells. In: Chance B, Alfano RR, Tromberg BJ, eds. Optical Tomography and Spectroscopy of Tissue III. Vol 3597. SPIE;1999:175-182. https://doi.org/10.1117/12.35679510.1117/12.356795 Search in Google Scholar

31. Sun Y, Fischer BM, Pickwell-MacPherson E. Effects of formalin fixing on the terahertz properties of biological tissues. J Biomed Opt. 2009;14(6):064017-1-7. https://doi.org/10.1117/1.326843910.1117/1.326843920059255 Search in Google Scholar

eISSN:
1898-0309
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Biomedizinische Technik, Physik, Technische und angewandte Physik, Medizinische Physik