Uneingeschränkter Zugang

Effects of detection system parameters on cross-correlations between MUAPs generated from parallel and inclined muscle fibres


Zitieren

1. Dimitrova NA, Dimitrov AG, Dimitrov GV, et al. Calculation of extracellular potentials produced by an inclined muscle fibre at a rectangular plate electrode. Med Eng Phys. 1999:21(8):583-588. https://doi.org/10.1016/s1350-4533(99)00087-910.1016/S1350-4533(99)00087-9 Search in Google Scholar

2. Mesin L, Farina D. Simulation of surface EMG signals generated by muscle tissues with inhomogeneity due to fiber pinnation. IEEE Trans Biomed Eng. 2004:51(9):1521-1529. https://doi.org/10.1109/TBME.2004.82755110.1109/TBME.2004.827551 Search in Google Scholar

3. Teklemariam A, Hodson-Tole EF, Reeves ND, Costen NP, Cooper G, et al. A finite element model approach to determine the influence of electrode design and muscle architecture on myoelectric signal properties. PLoS-ONE. 2016:11(2):1-18. https://doi.org/10.1371/journal.pone.014827510.1371/journal.pone.0148275475753726886908 Search in Google Scholar

4. Farina D, Cescon C, Merletti R, et al. Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern. 2002:86(6):445-456. https://doi.org/10.1007/s00422-002-0309-210.1007/s00422-002-0309-212111273 Search in Google Scholar

5. Farina D, Merletti R, Enoka RM, et al. The extraction of neural strategies from the surface EMG. J Appl Physiol. 2004:96(4):1486-1495. https://doi.org/10.1152/japplphysiol.01070.200310.1152/japplphysiol.01070.200315016793 Search in Google Scholar

6. Messaoudi N, Bekka RE. Simulated surface EMG signal as a function of physiological and non-physiological parameters: Analyze and interpretation. 2015: The Fourth International Conference on Electrical Engineering, ICEE2015, Boumerdes, Algeria, Proceedings, IEEE Xplore. https://doi.org/10.1109/INTEE.2015.741680110.1109/INTEE.2015.7416801 Search in Google Scholar

7. Fuglevand A, Winter DA, Patla AE, Stashuk D, et al. Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern. 1992:67(2):143-153. https://doi.org/10.1007/BF0020102110.1007/BF002010211627684 Search in Google Scholar

8. Farina D, Arendt-Nielsen L, Merletti R, Indino B, Graven-Nielsen T, et al. Selectivity of spatial filters for surface EMG detection from the tibialis anterior muscle. IEEE Trans Biomed Eng. 2003:50(3):354-364. https://doi.org/10.1109/TBME.2003.80883010.1109/TBME.2003.80883012669992 Search in Google Scholar

9. Zhou P, Suresh NL, Lowery MM, Rymer WZ, et al. Nonlinear spatial filtering of multichannel surface electromyogram signals during low force contractions. IEEE Trans Biomed Eng. 2009:56(7):1871-1879. https://doi.org/10.1109/TBME.2009.201773610.1109/TBME.2009.201773619342344 Search in Google Scholar

10. Östlund N, Yu J, Roeleveld K, Karlsson JS, et al. Adaptive spatial filtering of multichannel surface electromyogram signals. Med Biol Eng Comput. 2004:42(6):825-831. https://doi.org/10.1007/BF0234521710.1007/BF0234521715587475 Search in Google Scholar

11. Messaoudi N, Bekka RE, Belkacem S, et al. Cross-Correlation coefficient as a means for estimating the effect of MVC level according to the fibres inclination’, The Fifth International Conference on Electrical Engineering. 2017: ICEE2017, Boumerdes, Algeria, Proceedings, IEEE Xplore. https://doi.org/10.1109/ICEE-B.2017.819216610.1109/ICEE-B.2017.8192166 Search in Google Scholar

12. Beck TW, Housh TJ, Cramer JT, Weir JP, et al. The effects of inter-electrode distance over the innervation zone and normalization on the electromyographic amplitude and mean power frequency versus concentric, eccentric, and isometric torque relationships for the vastus lateralis muscle. J Electromyogr Kinesiol. 2009:19(2): 219-231. https://doi.org/10.1016/j.jelekin.2007.07.00710.1016/j.jelekin.2007.07.00717884581 Search in Google Scholar

13. Messaoudi N, Bekka RE. From single fibre action potential to surface electromyographic signal: A simulation study. Third International Conference, IWBBIO 2015, Granada, Spain, Proceedings, Part I, LNCS 9043, April 15-17, 2015:315–324. https://doi.org/10.1007/978-3-319-16483-0_3210.1007/978-3-319-16483-0_32 Search in Google Scholar

14. Farina D, Mesin L, Simone M, Merletti R, et al. A surface EMG generation model with multilayer cylindrical description of the volume conductor. IEEE Trans Biomed Eng. 2004: 1(3): 415-426. https://doi.org/10.1109/TBME.2003.82099810.1109/TBME.2003.82099815000373 Search in Google Scholar

15. Fuglevand AJ, Winter DA, Patla AE, et al. Models of recruitment and rate coding organisation in motor-unit pools. J Neurophysiol. 1993:70(6):2470-2488. https://doi.org/10.1152/jn.1993.70.6.247010.1152/jn.1993.70.6.24708120594 Search in Google Scholar

16. Rosenfalck P. Intra and extracellular fields of active nerve and muscle fibres: A physico-mathematical analysis of different models. Acta Physiol Scand Suppl. 1969:321:1-168. Search in Google Scholar

17. Messaoudi N, Bekka RE, Ravier P, Harba R, et al. Assessment of the non-Gaussianity and non-linearity levels of simulated sEMG signals on stationary segments. J Electromyog Kinesiol. 2017:32(1): 70-82. https://doi.org/10.1016/j.jelekin.2016.12.00610.1016/j.jelekin.2016.12.00628061379 Search in Google Scholar

18. Keenan KG, Valero-Cuevas FJ. Experimentally valid predictions of muscle force and EMG in models of motor-unit function are most sensitive to neural properties. J. Neurophysiol. 2007:98(3):1581-1590. https://doi.org/10.1152/jn.00577.200710.1152/jn.00577.200717615125 Search in Google Scholar

19. Keenan KG, Farina D, Meyer FG, Merletti R, Enoka RM, et al. Sensitivity of the cross-correlation between simulated surface EMGs for two muscles to detect motor unit synchronization. J App Physiol. 2007:102:1193-1201. https://doi.org/10.1152/japplphysiol.00491.200610.1152/japplphysiol.00491.200617068220 Search in Google Scholar

20. Farina D, Merletti R. A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Trans Biomed Eng. 2001:48(6):637-646. https://doi.org/10.1109/10.92378210.1109/10.92378211396594 Search in Google Scholar

21. Messaoudi N, Bekka RE, Belkacem S, et al. Classification of the systems used in surface electromyographic signal detection according to the degree of isotropy. Adv Biomed Eng. 2018:7(1):107-116. https://doi.org/10.14326/abe.7.10710.14326/abe.7.107 Search in Google Scholar

22. Barbero M, Rainoldi A, Merletti R, et al. Atlas of muscle innervation zones: understanding surface EMG and its applications. Springer, Italy 2012. https://doi.org/10.1007/978-88-470-2463-210.1007/978-88-470-2463-2 Search in Google Scholar

23. Merletti R, Farina D. (edts) Surface Electromyography: physiology, engineering and applications, IEEE Press / J Wiley, USA, May 2016.10.1002/9781119082934 Search in Google Scholar

24. Afsharipour B, Soedirdjo S, Merletti R, et al. Two-dimensional surface EMG: The effects of electrode size, interelectrode distance and image truncation. Biomed Sig Process Control. 2019: 49(1):298-307. https://doi.org/10.1016/j.bspc.2018.12.00110.1016/j.bspc.2018.12.001 Search in Google Scholar

25. Messaoudi N, Bekka RE, Belkacem S, et al. Influence of fibers inclination on the degree of gaussianity of simulated surface EMG signals. ICBBT 2020, May 22–24, 2020, Xi’an, China. https://doi.org/10.1145/3405758.340578110.1145/3405758.3405781 Search in Google Scholar

eISSN:
1898-0309
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Biomedizinische Technik, Physik, Technische und angewandte Physik, Medizinische Physik