Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, West Pomeranian University of TechnologyPoland
Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, West Pomeranian University of TechnologyPoland
This work is licensed under the Creative Commons Attribution 4.0 International License.
Alvarado, S., Megia-Fernandez, A., Ortega-Muñoz, M., Hernandez-Mateo, F., Lopez-Jaramillo, F.J. & Santoyo-Gonzalez, F. (2023). Removal of the Water Pollutant Ciprofloxacin Using Biodegradable Sorbent Polymers Obtained from Polysaccharides. Polymers, 15(15), 3188. DOI: 10.3390/polym15153188.Search in Google Scholar
Upadhyay, U., Sreedhar, I., Singh, S.A., Patel, C.M. & Anitha, K.L. (2021). Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydrate Polymers. 251, 117000. DOI: 10.1016/j.carbpol.2020.117000.Search in Google Scholar
Xu, D., Guo, J. & Yan, F. (2018). Porous ionic polymers: Design, synthesis, and applications. Prog. Polymer Sci. 79, 121–143. DOI: 10.1016/j.progpolymsci.2017.11.005.Search in Google Scholar
Filimonova, E., Bergmann, T., Zhao, S., Dyatlov, V.A., Malfait, W. & Wu, T. (2024). Effect of polymer concentration and cross-linking density on the microstructure and properties of polyimide aerogels. J. Sol-Gel Sci. Technol. 110, 747–759. DOI: 10.1007/s10971-024-06390-0.Search in Google Scholar
Kashma, S., Vishal, S., Vijay, K. (2019). Chapter: Synthesis of Hydrogels by Modification of Natural Polysaccharides Through Radiation Cross-Linking Polymerization for Use in Drug Delivery. In book: Radiation Effects in Polymeric Materials, Springer, 269–292. DOI:10.1007/978-3-030-05770-1_8Search in Google Scholar
Yu, F., Yang, P., Yang, Z., Zhang, X. & Ma, J. (2021). Double-network hydrogel adsorbents for environmental applications. Chem. Engin. J. 426, 131900. DOI: 10.1016/j.cej.2021.131900.Search in Google Scholar
Schmidt, B., Spychaj, T. (2010). Sorption of Cu2+ and Fe3+ onto starch grafted copolymers obtained via reactive extrusion. Prz. Chem. 89,1628–1630.Search in Google Scholar
Agboola, O., Fayomi, O.S.I., Ayodeji, A., Ayeni, A.O., Alagbe E.E.1, Sanni S.E., Okoro, E.E., Moropeng, L., Sadiku, R., Kupolati, K.W. & Oni, B.A. (2020). A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes. 11(2), 139. DOI: 10.3390/membranes11020139. Search in Google Scholar
Masoumi, H., Ghaemi, A. & Gilani, H.G. (2021). Evaluation of hyper-cross-linked polymers performances in the removal of hazardous heavy metal ions: A review. Separation and Purification Technology. 260, 118221. DOI: 10.1016/j.seppur.2020.118221. Search in Google Scholar
Shah, N., Mewada, R.K. & Mehta, T. (2016). Crosslinking of starch and its effect on viscosity behaviour. Rev. Chem. Engin. 32(2). DOI: 10.1515/revce-2015-0047.Search in Google Scholar
Schmidt, B., Rokicka, J., Janik, J. & Wilpiszewska, K. (2020). Preparation and Characterization of Potato Starch Copolymers with a High Natural Polymer Content for the Removal of Cu(II) and Fe(III) from Solutions. 12(11), 2562. DOI: 10.3390/polym12112562.Search in Google Scholar
Bekchanov, D., Mukhamediev, M., Yarmanov, S., Lieberzeit, P. & Mujahid, A. (2024). Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohyd. Polym. 323, 121397. DOI: 10.1016/j.carbpol.2023.121397.Search in Google Scholar
Ambika, & Singh, P.P. (2021). 11 - Natural polymer-based hydrogels for adsorption applications. Natural Polymers-Based Green Adsorbents for Water Treatment. 267–306. DOI: 10.1016/B978-0-12-820541-9.00008-9.Search in Google Scholar
Ashogbon, A.O. & Akintayo, E.T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch. 66, 41. DOI: 10.1002/star.201300106.Search in Google Scholar
De Oliveira, C.S., Andrade, M.M.P., Colman, T.A.D., da Costa, F.J.O.G. & E Schnitzler. (2014). Thermal, structural and rheological behaviour of native and modified waxy corn starch with hydrochloric acid at different temperatures. J. Thermal Anal. Calorim. 115, 13. DOI: 10.1007/s10973-013-3307-9.Search in Google Scholar
Schmidt, B. & Zubala, A. (2023). Rice starch as a polymer sorbent of iron cations. Polimery. 68(9), 473–479. DOI: 10.14314/polimery.2023.9.3. Search in Google Scholar
Guo, Q., Wang, Y., Fan, Y., Liu, X., Ren, S., Wen, Y. & Shen, B. (2015). Synthesis and characterization of multi-active site grafting starch copolymer initiated by KMnO4 and HIO4/H2SO4 systems. Carbohyd. Polym. 117, 247–254. DOI: 10.1016/j.carbpol.2014.09.033.Search in Google Scholar
Okyere, A.Y., Rajendran, S. & Annor, G.A. (2022). Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Current Res. Food Sci. 5, 451–463. DOI: 10.1016/j.crfs.2022.02.007. Search in Google Scholar
Karma, V., Gupta, A.D., Yadav, D.K., Singh, A.A., Verma, M. & Singh, H. (2022). Recent Developments in Starch Modification by Organic Acids: A Review. Starch. 74, 9–10. DOI: 10.1002/star.202200025. Search in Google Scholar
Milanezzi, G.C. & Silva, E.K. (2025). Pulsed electric field-induced starch modification for food industry applications: A review of native to modified starches. Carbohyd. Polym. 348, 122793. DOI: 10.1016/j.carbpol.2024.122793.Search in Google Scholar
Al-Jubory, F.K, Mujtaba, I.M. & Abbas A.S. (2020). Preparation and characterization of biodegradable crosslinked starch ester as adsorbent. AIP Conference Procideengs. 2213, 020165. DOI: 10.1063/5.0000170. Search in Google Scholar
Bekchanov, D., Mukhamediev, M., Eshturs, D., Lieberzeit, P. & Su, X. (2024). Cellulose- and starch-based functional materials for efficiently wastewater treatment. Polym. Adv. Technol. 35(1), e6207. DOI: 10.1002/pat.6207. Search in Google Scholar
Schmidt, B. (2018). Effect of crosslinking agent on potato starch grafted acrylamide copolymers and their sorption properties for water, Fe3+ and Cu2+ cations. Polim. 63, 5. DOI: 10.14314/polimery.2018.5.3.Search in Google Scholar
Schmidt, B. & Spychaj, T. (2010). Polish: Sorpcja Cu2+ i Fe3+ na szczepionych kopolimerach skrobi z reaktywnego wytłaczania. Prz. Chem. 89, 1628–1630.Search in Google Scholar
Zdanowicz, M., Schmidt, B. & Spychaj, T. (2010). Starch graft copolymers as superabsorbents obtained via reactive extrusion processing. Polish J. Chem. Technol. 12, 14. DOI: 10.2478/v10026-010-0012-3.Search in Google Scholar
Lawal, O.S., Lechner M.D. & Kulicke, W.M. (2008). Single and multi-step carboxymethylation of water yam (Dioscorea alata) starch: Synthesis and characterization. Internat. J. Biological Macromol. 42, 429. DOI: 10.1016/j.ijbiomac.2008.02.006.Search in Google Scholar
Lanthong, P., Nuisin, R. & Kiatkamjornwong, S. (2006), Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohyd. Polym. 66, 229. DOI: 10.1016/j.carbpol.2006.03.006. Search in Google Scholar
Kiatkamjornwong, S., Chomsaksakul, W. & Sonsuk, M. (2000). Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat. Physics Chem. 59, 413. DOI: 10.1016/S0969-806X(00)00297-8.Search in Google Scholar
Eutamene, M., Benbakhti, A., Khodja, M. & Jada, A. (2009). Preparation and Aqueous Properties of Starch-grafted Polyacrylamide Copolymers. Starch. 61, 2, 81. DOI: 10.1002/star.200800231.Search in Google Scholar
Tungala, K., Maurya, A., Adhikary, P., Sonker, E., Kerketta, A., Karmakar, N.C. & Krishnamoorthi, S. (2017). Flocculation characteristic of tapioca starch grafted polyacryl-amide in kaolin and opencast coal mines dust suspensions and methylene blue dye removal. Res. J. Life Sci. Bioinf. Pharmac. Chem. Sci. 2(5), 138–155. DOI: 10.26479/2017.0205.13.Search in Google Scholar