Uneingeschränkter Zugang

Glycerolysis-Interesterification of Palm Olein and Coconut Oil Blend using Two High-Shear Continuous Stirred Tank Reactors


Zitieren

Wangi, I.P., Supriyanto, S., Sulistyo, H. & Hidayat, C. (2022). Sodium Silicate Catalyst for Synthesis Monoacylglycerol and Diacylglycerol-Rich Structured Lipids: Product Characteristic and Glycerolysis–Interesterification Kinetics. Bull. Chem. Reaction Engin. & Catal., 17(2) 250–262, DOI: 10.9767/bcrec.17.2.13306.250-262. Search in Google Scholar

Echeverri, D.A., Cardeño, F. & Rios, L.A. (2011). Glycerolysis of soybean oil with crude glycerol containing residual alkaline catalysts from biodiesel production .JAOCS, J. Amer. Oil Chem.’ Soc. 88(4), 551–557, DOI: 10.1007/s11746-010-1688-5. Search in Google Scholar

Ferretti,. C.A., Spotti, M.L. & Di Cosimo, J.I. (2018). Diglyceride-rich oils from glycerolysis of edible vegetable oils \. Catal Today 302, 233–241, DOI: 10.1016/j.cattod.2017.04.008. Search in Google Scholar

Sulistiya, E, Yanti, R. & Hidayat, C. (2022). Chemical synthesis mono-and diacylglycerol from palm stearin-olein blend using continuous high shear stirred tank reactor. Adv. Food Sci., Sustain. Agric. and Agroind. Engin., (2) 144–153. Search in Google Scholar

de Paula, A.V., Nunes, G.F.M., de Castro, H.F. & dos Santos, J.C. (2018). Performance of packed bed reactor on the enzymatic interesterification of milk fat with soybean oil to yield structure lipids. Int. Dairy J., 86 1–8, DOI: 10.1016/J. IDAIRYJ.2018.06.014. Search in Google Scholar

Hashemzadeh, Gargari, M. & Sadrameli, S.M. (2018). Investigating continuous biodiesel production from linseed oil in the presence of a Co-solvent and a heterogeneous based catalyst in a packed bed reactor. Energy 148, 888–895, DOI: 10.1016/J.ENERGY.2018.01.105. Search in Google Scholar

Li, Z.H., Lin, P.H.., Wu, J.C.S., Huang, Y.T., Lin, K.S. & Wu, K.C.W. (2013). A stirring packed-bed reactor to enhance the esterification-transesterification in biodiesel production by lowering mass-transfer resistance. Chem. Engin. J. 234, 9–15, DOI: 10.1016/j.cej.2013.08.053. Search in Google Scholar

Miotti, R.H., Cortez, D.V. & De Castro, H.F. (2022). Transesterification of palm kernel oil with ethanol catalyzed by a combination of immobilized lipases with different specificities in continuous two-stage packed-bed reactor. Fuel 310, 122343, DOI: 10.1016/J.FUEL.2021.122343. Search in Google Scholar

Zhang, Z., Lee, W.J., Sun, X. & Wang, Y. (2022). Enzymatic interesterification of palm olein in a continuous packed bed reactor: Effect of process parameters on the properties of fats and immobilized Thermomyces lanuginosus lipase. LWT, DOI: 10.1016/j.lwt.2022.113459. Search in Google Scholar

Kalu, E.E., Chen, K.S. & Gedris, T. (2011). Continuous-flow biodiesel production using slit-channel reactors. Biores. Technol., 102(6), 4456–4461, DOI: 10.1016/J. BIORTECH.2010.12.097. Search in Google Scholar

Junior, I.I., Flores, M.C., Sutili F.K., Leite,, S.G.F., Leandro, L.S., Leal, I.C.R. & De Souza ROMA. (2012). Fatty acids residue from palm oil refining process as feedstock for lipase catalyzed monoacylglicerol production under batch and continuous flow conditions. J. Mol. Catal. B Enzym. 77, 53–58, DOI: 10.1016/J.MOLCATB.2012.01.008. Search in Google Scholar

Nasir, N.F., Daud, W.R.W., Kamarudin S.K. & Yaakob, Z. (2014). Methyl Esters Selectivity of Transesterification Reaction with Homogenous Alkaline Catalyst to Produce Biodiesel in Batch, Plug Flow, and Continuous Stirred Tank Reactors. Internat. J. Chem. Engin., DOI: 10.1155/2014/931264. Search in Google Scholar

Kouzu, M., Fujimori, A., Fukakusa, R. ta, Satomi, N. & Yahagi, S. (2018). Continuous production of biodiesel by the CaO-catalyzed transesterification operated with continuously stirred tank reactor. Fuel Process. Technol., 181, 311–317, DOI: 10.1016/J.FUPROC.2018.10.008. Search in Google Scholar

Komers, K., Skopal, F. & Čegan, A. (2010). Continuous biodiesel production in a cascade of flow ideally stirred reactors. Biores., Technol., 101(10), 3772–3775, DOI: 10.1016/J. BIORTECH.2009.12.099. Search in Google Scholar

Fonseca, F.A.S., Vidal-Vieira J.A. & Ravagnani S.P. (2010). Transesterification of vegetable oils: Simulating the replacement of batch reactors with continuous reactors. Biores. Technol., 101(21), 8151–8157, DOI: 10.1016/j.biortech.2010.05.077. Search in Google Scholar

Phuah, E.T., Tang, T.K., Lee, Y.Y., Choong, T.S.Y/, Tan, C.P. & Lai, OM. (2015). Review on the Current State of Diacylglycerol Production Using Enzymatic Approach. Food Bioproc. Tech., 8(6), 1169–1186, DOI: 10.1007/s11947-015-1505-0. Search in Google Scholar

Darnoko, D. & Cheryan, M. (2000). Continuous production of palm methyl esters. J. Amer. Oil Chem. Soc. 77(12), 1269–1272. DOI: 10.1007/s11746-000-0199-x. Search in Google Scholar

Arranz-Martínez, P., Corzo-Martínez, M., Vázquez, L., Reglero, G. & Torres, C.F. (2018). Lipase catalyzed glycerolysis of ratfish liver oil at stirred tank basket reactor: A kinetic approach. Process Biochem., 64, 38–45. DOI: 10.1016/J. PROCBIO.2017.09.026. Search in Google Scholar

Klumperman, B. & Heuts, J.P.A. (2020). The solution copolymerization of styrene and maleic anhydride in a continuous stirred tank reactor and its theoretical modelling. Polymer (Guildf) 202, 122730. DOI: 10.1016/J.POLYMER.2020.122730. Search in Google Scholar

Esteban, L., Muñío, M. del M., Robles, A., Hita, E., Jiménez, M.J., González, P.A., Camacho, B. & Molina, E. (2009). Synthesis of 2-monoacylglycerols (2-MAG) by enzymatic alcoholysis of fish oils using different reactor types. Biochem. Eng. J., 44(2–3), 271–279. DOI: 10.1016/J.BEJ.2009.01.004. Search in Google Scholar

Ri, P.C., Ren, N.Q., Ding, J., Kim, J.S., & Guo, W.Q. (2017). CFD optimization of horizontal continuous stirred-tank (HCSTR) reactor for bio-hydrogen production. Int. J. Hydrogen. Energy, 42(15), 9630–9640. DOI: 10.1016/J. IJHYDENE.2017.02.035. Search in Google Scholar

Zhang, Z., Lee, W.J., Zhou, H. & Wang,. Y. (2019). Effects of chemical interesterification on the triacylglycerols, solid fat contents and crystallization kinetics of palm oil-based fats. Food Funct 10(11), 7553–7564. DOI: 10.1039/c9fo01648a. Search in Google Scholar

Subroto, E., Supriyanto, Utami, T. & Hidayat, C. (2019). Enzymatic glycerolysis–interesterification of palm stearin–olein blend for synthesis structured lipid containing high mono- and diacylglycerol. Food Sci. Biotechnol. 28(2), 511–517, DOI: 10.1007/s10068-018-0462-6. Search in Google Scholar

Motamedzadegan, A., Dehghan, B., Nemati, A., Tirgarian, B. & Safarpour, B. (2020). Functionality improvement of virgin coconut oil through physical blending and chemical inter-esterification. SN Appl. Sci. DOI: 10.1007/s42452-020-03309-6. Search in Google Scholar

Wangi, I.P., Supriyanto, Sulistyo, H. & Hidayat, C. (2023). Glycerolysis–interesterification in high-shear reactor using sodium silicate catalyst: effect of mixing rate on reaction kinetics. Reaction Kinetics, Mechanisms and Catalysis, DOI: 10.1007/s11144-023-02383-2. Search in Google Scholar

Subroto, E., Indiarto, R., Wulandari, E. & Azimah, H.N. (2021). Oil to glycerol ratio in enzymatic and chemical glycerolysis for the production of mono- And diacylglycerol. Internat. J. Engineering Trends and Technol., 69(8), 117–125, DOI: 10.14445/22315381/IJETT-V69I8P215. Search in Google Scholar

Subroto, E., Indiarto, R., Pangawikan, A.D., Lembong, E. & Hadiyanti, R. (2021). Types and concentrations of catalysts in chemical glycerolysis for the production of monoacylglycerols and diacylglycerols. Adv. Sci., Technol. Engin. Systems 6(1), 612–618. DOI: 10.25046/aj060166. Search in Google Scholar

Puspita, Arum, A., Hidayat, C. & Supriyanto, (2019). Synthesis of Emulsifier from Refined Bleached Deodorized Palm Stearin by Chemical Glycerolysis in Stirred Tank Reactor. KnE Life Sciences 4(11), 130. DOI: 10.18502/kls.v4i11.3859. Search in Google Scholar

AOCS. (1997). Official Methods and Recommended Practices of the American Oil Chemist’s Society, Physical and Chemical Characteristics of Oils, Fats and Waxes, Section I. Search in Google Scholar

Biswas, N, Cheow, Y.L., Tan, C.P. & Siow, L.F. (2017). Physical, rheological and sensorial properties, and bloom formation of dark chocolate made with cocoa butter substitute (CBS). LWT 82, 420–428, DOI: 10.1016/j.lwt.2017.04.039. Search in Google Scholar

Cano-Medina, A., Jiménez-Islas, H., Dendooven, L., Herrera, R.P., González-Alatorre, G. & Escamilla-Silva, E.M. (2011). Emulsifying and foaming capacity and emulsion and foam stability of sesame protein concentrates. Food Res. Internat. 44(3), 684–692. DOI: 10.1016/j.foodres.2010.12.015. Search in Google Scholar

Márquez, A.L., Pérez, M.P. & Wagner, J.R. (2013). Solid fat content estimation by differential scanning calorimetry: Prior treatment and proposed correction. JAOCS, J. Amer. Oil Chem. Soc. 90(4), 467–473. DOI: 10.1007/s11746-012-2190-z. Search in Google Scholar

Norizzah, A.R., Nur, Azimah, K. & Zaliha, O. (2018). Influence of enzymatic and chemical interesterification on crystallisation properties of refined, bleached and deodourised (RBD) palm oil and RBD palm kernel oil blends. Food Res. Internat., 106, 982–991. DOI: 10.1016/J.FOODRES.2018.02.001. Search in Google Scholar

Carlucci, C. (2022). An Overview on the Production of Biodiesel Enabled by Continuous Flow Methodologies. Catalysts. DOI: 10.3390/CATAL12070717. Search in Google Scholar

Krisnangkura, K. & Simamaharnnop, R. (1992). Continuous Transmethylation of Palm Oil in an Organic Solvent. Search in Google Scholar

Sivakanthan, S., Jayasooriya, A.P. & Madhujith, T. (2019). Optimization of the production of structured lipid by enzymatic interesterification from coconut (Cocos nucifera) oil and sesame (Sesamum indicum) oil using Response Surface Methodology. LWT 101, 723–730, DOI: 10.1016/J.LWT.2018.11.085. Search in Google Scholar

Zhang, Z., Wang, Y., Ma, X., Wang, E., Liu, M. & Yan, R. (2015). Characterisation and oxidation stability of monoacylglycerols from partially hydrogenated corn oil. Food Chem., 173, 70–79. DOI: 10.1016/J.FOODCHEM.2014.09.155. Search in Google Scholar

Gunstone, F. (2004). THE CHEMISTRY OF OILS AND FATS Sources, Composition, Properties and Uses. In Crop Research. CRC. Search in Google Scholar

Bariwere, Samuel, C., Joy, E.E. & Davidm, Barine, K.K. (2018). Effect of Chemical Interesterification on the Physicochemical Characteristics and Fatty Acid Profile of Bakery Shortening Produced from Shea Butter and Fluted Pumpkin Seed Oil Blend. Americ. J. Food Sci. and Technol. 6(4), 187–194, DOI: 10.12691/ajfst-6-4-8. Search in Google Scholar

Soares, FASDM, Da Silva, R.C., Hazzan, M., Capacla, I.R., Viccola, E.R., Maruyama, J.M. & Gioielli, L.A. (2012). Chemical interesterification of blends of palm stearin, coconut oil, and canola oil: Physicochemical properties. J. Agric. Food Chem., 60(6), 1461–1469. DOI: 10.1021/jf204111t. Search in Google Scholar

Kowalska, M., Żbikowska, A. & Kowalski, B. (2014). Enzymatically Modified Fats Based on Mutton Tallow and Rapeseed Oil Suitable for Fatty Emulsions JAOCS, J. Americ. Oil Chem. Soc. 91(10), 1703–1710. DOI: 10.1007/s11746-014-2512-4. Search in Google Scholar

Biswas, N., Cheow, Y.L., Tan, C.P. & Siow, L.F. (2018). Physicochemical Properties of Enzymatically Produced Palm-Oil-Based Cocoa Butter Substitute (CBS) With Cocoa Butter Mixture. Europ. J. Lipid Sci. Technol. DOI: 10.1002/ejlt.201700205. Search in Google Scholar

Kadivar, S., De Clercq, N., Mokbul, M. & Dewettinck, K. (2016). Influence of enzymatically produced sunflower oil based cocoa butter equivalents on the phase behavior of cocoa butter and quality of dark chocolate. LWT 66 48–55, DOI: 10.1016/j.lwt.2015.10.006. Search in Google Scholar

Basso, R.C., Ribeiro, A.P.B., Masuchi, M.H., Gioielli, LA, Gonçalves, L.A.G., Santos, A.O/dos, Cardoso, L.P. & Grimaldi, R. (2010). Tripalmitin and monoacylglycerols as modifiers in the crystallisation of palm oil. Food Chem., 122(4), 1185–1192. DOI: 10.1016/j.foodchem.2010.03.113. Search in Google Scholar

Saberi, A.H., Tan, C.P. & Lai, O.M. (2011). Phase behavior of palm oil in blends with palm-based diacylglycerol. JAOCS, J. Amer. Oil Chem. Soc., 88(12), 1857–1865. DOI: 10.1007/s11746-011-1860-6. Search in Google Scholar

Biswas, N., Cheow, Y.L., Tan, C.P. & Siow, L.F. (2016). Blending of Palm Mid-Fraction, Refined Bleached Deodorized Palm Kernel Oil or Palm Stearin for Cocoa Butter Alternative. JAOCS, J. Amer. Oil Chem. Soc., 93(10), 1415–1427. DOI: 10.1007/s11746-016-2880-z. Search in Google Scholar

Le Révérend, B.J.D., Fryer, P.J., Coles, S. & Bakalis, S. (2010). A method to qualify and quantify the crystalline state of cocoa butter in industrial chocolate. JAOCS, J. Amer. Oil Chem. Soc. 87(3), 239–246. DOI: 10.1007/s11746-009-1498-9. Search in Google Scholar

Jahurul, H.A.M., M.R N, F.S. A., Shaarani, S., Mamat H., Lee J.S., Norliza, J., Mansoor, A.H., Selamat, J., Khan, F., Matanjun, P. & Islam, Sarker, M.Z. (2020). Hard Fats Improve the Physicochemical and Thermal Properties of Seed Fats for Applications in Confectionery Products. Food Rev. Internat., 36(6), 601–625. DOI: 10.1080/87559129.2019.1657443. Search in Google Scholar

Chen, Y., Wang, Y., Jin, J., Jin, Q., Akoh, C.C. & Wang, X. (2022). Formation of dark chocolate fats with improved heat stability and desirable miscibility by blending cocoa butter with mango kernel fat stearin and hard palm-mid fraction. LWT, DOI: 10.1016/j.lwt.2022.113066. Search in Google Scholar

De Clercq, N., Kadivar, S., Van de Walle, D., De Pelsmaeker, S., Ghellynck, X. & Dewettinck, K. (2017). Functionality of cocoa butter equivalents in chocolate products. Europ. Food Res. Technol. 243(2), 309–321. DOI: 10.1007/s00217-016-2745-6. Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik