Uneingeschränkter Zugang

Heat transfer in compact cross-flow mini heat exchanger


Zitieren

Kandlikar, S.G., & Grande, W.J. (2003). Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. Heat Transfer Engin., 24(1), 3–17. DOI: 10.1080/01457630304040. Search in Google Scholar

Mehendale, S.S., Jacobi, A.M., & Shah, R.K. (2000). Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design. Appl. Mech. Rev., vol. 53, no 7. DOI: 10.1115/1.3097347. Search in Google Scholar

Heatric Ltd. Heatric Printed Circuit Heat Exchangers. Retrieved April 26, 2023, from https://www.heatric.com/heat-exchangers/ Search in Google Scholar

Kang, S.W., Chen, Y.T., & Chang, G.S. (2002). The manufacture and test of (110) orientated silicon based micro heat exchanger. J. Appl. Sci. Engin., 5(3), 129–136. DOI: 10.6180/jase.2002.5.3.02. Search in Google Scholar

Pabiś, A. (2011). Charakterystyka pracy krzyżowo-prądowego mikrowymiennika ciepła. Chemik 2011, 65, 10, 983–990. Search in Google Scholar

Prończuk, M., & Krzanowska, A. (2021). Experimental investigation of the heat transfer and pressure drop inside tubes and the shell of a minichannel shell and tube type heat exchanger. Energies, 14(24), 8563. DOI: 10.3390/en14248563. Search in Google Scholar

Hobler, T. (1979). Ruch ciepła i wymienniki (wydanie V). Warszawa, Polska: Wydawnictwa Naukowo Techniczne. Search in Google Scholar

The MathWorks, Inc. Matlab. Retrieved April 26, 2023, from https://www.mathworks.com/products/matlab.html Search in Google Scholar

Shah, R.K. (1975). Thermal entry length solutions for the circular tube and parallel plates. In Proceedings of 3rd national heat and mass transfer conference 1975, Vol. 1, pp. 11–75. Indian Institute of Technology Bombay. Search in Google Scholar

Sieder, E.N., & Tate, G.E. (1936). Heat transfer and pressure drop of liquids in tubes. Ind. & Engin. Chem., 28(12), 1429–1435. DOI: 10.1021/ie50324a027. Search in Google Scholar

Dittus, F.W. (1930). Heat transfer in automobile radiators of the tube type. Univ. Calif. Pubs. Eng., 2, 443. Search in Google Scholar

Hausen, H. (1959). New equations for heat transfer with free or forced flow [in German]. Allg. Waermetech, 9, 75–79. Search in Google Scholar

Gnielinski, V. (1976). New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng., 16(2), 359–368. Search in Google Scholar

Ünverdi, M., Kücük, H., & Yılmaz, M.S. (2019). Experimental investigation of heat transfer and pressure drop in a mini-channel shell and tube heat exchanger. J. Heat Mass Transfer, 55, 1271–1286. DOI: 10.1007/s00231-018-2514-0. Search in Google Scholar

Choi, S.B., Barron, R.F. & Warrington, R.O. (1991). Fluid flow and heat transfer in microtubes, in: Micromechanical Sensors, Actuators and Systems, ASME DSC, vol. 32, Atlanta, GA, pp. 123–134 Search in Google Scholar

Yu, D., Warrington, R.O., Barron, R. & Ameel, T. (1995). An experimental and theoretical investigation of fluid flow and heat transfer in microtubes, in: Proceedings of ASME/JSME Thermal Engineering Joint Conf., Maui, HI, pp. 523–530. Search in Google Scholar

Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M. & Qureshi, Z.H. (1998). An Experimental investigation of single-phase forced convection in microchannels, Internat. J. Heat Mass Transfer, 41, 851–857. DOI: 10.1016/S0017-9310(97)00180-4. Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik