Zitieren

Naveed, M., Bukhari, B., Aziz, T., Zaib, S., Mansoor, M.A., Khan, A.A., Shahzad, M., Dablool, A.S., Alruways, M.W., Almalki, A.A., Alamri, A.S. & Alhomrani, M. (2022). Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Anti-proliferative Activity via Mathematical Approaches. Molecules, 27(13), 4226. DOI: 10.3390/molecules27134226. Open DOISearch in Google Scholar

Naveed, M., Batool, H., Rehman, S.U., Javed, A., Makh-doom, S.I., Aziz, T., Mohamed, A.A., Sameeh, M.Y., Alruways, M.W., Dablool, A.S., Almalki, A.A., Alamri, A.S., Alhomrani, M. (2022). Characterization and Evaluation of the Antioxidant, Antidiabetic, Anti-Inflammatory, and Cytotoxic Activities of Silver Nanoparticles Synthesized Using Brachychiton populneus Leaf Extract. Processes, 10(8), 1521. DOI: 10.3390/pr10081521 Open DOISearch in Google Scholar

Burugapalli, K., Koul, V. & Dinda, A.K. (2004). Effect of composition of interpenetrating polymer network hydrogels based on poly (acrylic acid) and gelatin on tissue response: A quantitative in vivo study. Biomed. Mater. Res., 68, 210–218. DOI: 10.1002/jbm.a.10117. Open DOISearch in Google Scholar

Ranjha, N.M., Ayub, G., Naseem, S. & Ansari, M.T. (2010). Preparation, and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J. Mater. Med., 21, 2805–2816. DOI: 10.1007/s10856-010-4134-1. Open DOISearch in Google Scholar

Hamidi, M., Azadi, A. & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Adv. Drug. Del. Rev., 60, 1638–1649. DOI: 10.1016/j.addr.2008.08.002. Open DOISearch in Google Scholar

Dai, W.S. & Barbari, T.A. (1999). Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly (vinyl alcohol). J. Membr. Sci., 156, 67–79. DOI: 10.1016/S0376-7388(98)00330-5. Open DOISearch in Google Scholar

Hennink, W.E. & Nostrum, C.F.V. (2002). Noval crosslinking methods to design hydrogels. Adv. Drug. Del. Rev., 54, 13–36. DOI: 10.1016/S0169-409X(01)00240-X. Open DOISearch in Google Scholar

Bigi, A., Cojazzi, G., Panzavolta, S., Roveri, N. & Ru-bini, K. (2002). Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 23, (24), 4827–432. DOI:10.1016/s0142-9612(02)00235-1. Open DOISearch in Google Scholar

William, J.R. (2006). Pharmaceutical Necessities. Remington the Science and Practice of Pharmacy vol.1, 21sted, chap. 55, p 1074. Search in Google Scholar

Kunal, P. & Banthia, A.K. (2007). Biomedical evaluation of polyvinyl alcohol-gelatin esterified hydrogel for wound dressing. Mater. Sci., 18, 1889–1894. DOI:10.1007/s10856-007-3061-2. Open DOISearch in Google Scholar

Sanlı, O., Ay, N. & Isıklan, N. (2007). Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly (vinyl alcohol)-grafted-poly(acrylamide)/sodium alginate blend beads. Eur. J. Pharm. Biopharm., 65, 204–214. DOI: 10.1016/j.ejpb.2006.08.004. Open DOISearch in Google Scholar

Pawde, S.M. & Deshmukh, K. (2008). Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J. Appl. Polym. Sci., 109, 3431–3437. DOI: 10.1002/app.28454. Open DOISearch in Google Scholar

Yurong, L. & Luke, M.G. (2010). Thermal behavior, and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. J. Mech. Behav. Biomed. Mater., 3, 203–209. DOI: 10.1016/j.jmbbm.2009.07.001. Open DOISearch in Google Scholar

Bajpai, A.K. & Rajesh, S. (2005). Preparation and characterization of biocompatible spongy cryogels of polyvinyl alcohol–gelatin and study of water sorption behavior. Polym. Int., 54, 1233–1242. DOI: 10.1002/pi.1813. Open DOISearch in Google Scholar

Young, K.M. & Byong, T.L. Fabrication of polyvinyl alcohol/gelatin nanofibers composites and evaluation of their material properties. J. Nanomater., (2011), 8, 213–218. DOI: 10.1002/jbm.b.31701. Open DOISearch in Google Scholar

Kunal, P. & Banthia, A.K. (2007). Preparation and characterization of polyvinyl alcohol–gelatin hydrogel membranes for biomedical applications. AAPS Pharm. Sci. Tech., 8, 21–24. DOI: 10.1208/pt080121. Open DOISearch in Google Scholar

Ranjha, N.M., Mudassir, J. & Sheikh, Z.Z. (2011). Synthesis and characterization of pH-sensitive pectin/acrylic acid hydrogels for verapamil release study. Iranian Polym. J. 20, 147–159. https://www.magiran.com/paper/829950?lang=en Search in Google Scholar

Ranjha, N.M., Ayub, G. Naseem, S. & Ansari, M.T. (2010). Preparation, and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J. Mater. Sci. Mater. Med., 21, 2805–2816. DOI: 10.1007/s10856-010-4134-1. Open DOISearch in Google Scholar

Jeong, J.C., Lee, J. & Cho, K. (2003). Effects of crystalline microstructure on drug release behavior of poly (q-caprolac-tone) microspheres. J. Cont. Rel., 92, 249–258. DOI: 10.1016/S0168-3659(03)00367-5. Open DOISearch in Google Scholar

Leea,. S.C., Kang, S.W., Kima, C., Kwonb, I.C. & Jeongb, S.Y. (2000). Synthesis and characterization of amphiphilic poly (2-ethyl-2-oxazoline)/poly (1-caprolactone) alternating multi-block copolymers. Polym. Sci., 41, 7091–7097. DOI: 10.1016/s0168-3659(03)00367-5. Open DOISearch in Google Scholar

Yin, L., Fei, L., Cui, F., Tang, C. & Yin, C. (2007). Superporous hydrogels containing poly (acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials, 28, 1258–1266. DOI: 10.1016/j.biomaterials.2006.11.008. Open DOISearch in Google Scholar

Line, W.J. & Lu, CH. (2002). Characterization and permeation of microporous poly (caprolactone) films. J. Memb. Sci., 198, 109–118. DOI: 10.1016/S0376-7388(01)00652-4. Open DOISearch in Google Scholar

Jabbari, E. & Nozari, S. (2000). Swelling behaviour of acrylic acid hydrogels prepared gamma radiation crosslinking of polyacrylic acid in aqueous solution. Polym. J. 36, 2685–2692. DOI: 10.1016/S0014-3057(00)00044-6. Open DOISearch in Google Scholar

Britton, L.N., Ashman, R.B., Aminabhavi, T.M. & Cassidy, P.E. (1988). Prediction of Transport Properties of Permeants through Polymer Films. J. Chem. Educ., 365– 368. DOI:10.1021/ed065p368. Open DOISearch in Google Scholar

Peppas, N.A., Huang, Y., Torres-Lugo, M., Ward, J.H. & Zhang, J. (2000). Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu Rev. Biomed. Eng., 2, 9–29. DOI: 10.1146/annurev.bioeng.2.1.9. Open DOISearch in Google Scholar

Pourjavadi, A. & Barzegar, S. (2009). Smart Pectin based Superabsorbent Hydrogel as a Matrix for Ibubrofen as an Oral Non-steroidal Anti-inflammatory Drug Delivery. Starch/Strake, 61, 173–187. DOI: 10.1016/S0014-3057(00)00044-6. Open DOISearch in Google Scholar

Serraa, L., Nechc, J.D. & Peppas, N. (2006). Drug transport mechanisms and release kinetics from molecularly designed poly (acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27, 5440–5451. DOI: 10.1016/j.biomaterials.2006.06.011. Open DOISearch in Google Scholar

Najib, N. & Suleiman, M. (1985). The kinatics of drug release from ethyle cellulose solid dispersion. Drug. Del. Ind. Pharm., 11, 2169–2189. DOI: 10.3109/03639048509087779. Open DOISearch in Google Scholar

Desai, S.J., Singh, P., Simonelli, A.P. & Higuci, W.I. (1966). Investigation of factors influencing release of solid drug dispersed in wax matrics. Quantitative studies involving polyethylene plastic matrix. J. Pharm. Sci., 55, 1230–1234. DOI: 10.1002/jps.2600551113. Open DOISearch in Google Scholar

Higuchi, T. (1963). Mechanism of sustained action medication: Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 50, 1145–1149. DOI: 10.1002/jps.2600521210. Open DOISearch in Google Scholar

Peppas, N.A. (1985). Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv., 60, 110–111. Search in Google Scholar

Korsmeyer, R.W., Gurny, R., Doelker, E.M., Buri, P., Peppas, N.A. (1983). Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm., 15, 25–35. DOI: 10.1016/0378-5173(83)90064-9. Open DOISearch in Google Scholar

Gunasekaran, S., Wang, T. & Chai, C. (2006). Swelling of pH-Sensitive Chitosan–Poly (vinyl alcohol) Hydrogels. J. Appl. Polym. Sci., 102, 4665–4671. DOI: 10.1002/app.24825. Open DOISearch in Google Scholar

Zhu, D., Jin, L., Wang, Y. & Ren, H. (2012). Swelling behavior of gelatin-based hydrogel cross-linked with microbial transglutaminase. J. aqeic. 63, 12–23. Search in Google Scholar

Byun, H., Hong, B., Nam, S.Y. Ji W.R., Sang, B.L. & Go, Y.M. (2008). Swelling behavior and drug release of poly (vinyl alcohol) hydrogel cross-linked with poly (acrylic acid). Macromol. Res. 16, 189–193. DOI: 10.1007/BF03218851. Open DOISearch in Google Scholar

Bajpai, A.K. & Saini, R. (2005). Preparation and characterization of biocompatible spongy cryogels of poly(vinyl alcohol)–gelatin and study of water sorption behaviour. Polym. Int. 54, 1233–1242. DOI: 10.1007/s10856-006-6329-z. Open DOISearch in Google Scholar

Qiao, C., Cao, X. & Wang, F. (2012). Swelling Behavior Study of Physically Crosslinked Gelatin Hydrogels. Polym & Polym Composites. 20, 11 – 21. DOI: 10.1177/0967391112020001-210. Open DOISearch in Google Scholar

Hu, X., Ma, L., Wang, C. & Gao, C. (2009). Gelatin Hydrogel Prepared by Photo-initiated Polymerization and Loaded with TGF-b1 for Cartilage Tissue Engineering. Macromol. Biosci., 9, 1194–1201. DOI: 10.1002/mabi.200900275. Open DOISearch in Google Scholar

Parka, J.S., Parkb, J.W. & Ruckensteinc, E. (2001). Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polym., 42, 4271–4280. DOI: 10.1016/S0032-3861(00)00768-0. Open DOISearch in Google Scholar

Crank, J. In the mathematics of diffusion, 2nd edn. Oxford, clarendon press. (1975), p 244. Search in Google Scholar

Aziz, T., Nadeem, A.A., Sarwar, A., Perveen, I., Hussain, N., Khan, A.A., Daudzai, Z., Cui, H. & Lin, L. (2023). Particle Nanoarchitectonics for Nanomedicine and Nanotherapeutic Drugs with Special Emphasis on Nasal Drugs and Aging. Biomedicines 11, 354. DOI: 10.3390/biomedicines11020354. Open DOISearch in Google Scholar

Aziz, T., Naveed, M., Makhdoom, S.I., Ali, U., Mughal, M.S., Sarwar, A., Khan, A.A., Zhennai, Y., Sameeh, M.Y., Dablool, A.S., Alharbi, A.A., Shahzad, M., Alamri, A.S. & Alhomrani, M. (2023). Genome Investigation and Functional Annotation of Lactiplantibacillus plantarum YW11 Revealing Streptin and Ruminococcin-A as Potent Nutritive Bacteriocins against Gut Symbiotic Pathogens. Molecules 28, 491. DOI: 10.3390/molecules28020491. Open DOISearch in Google Scholar

Britton, L.N., Ashman, R.B., Aminabhavi, T.M. & Cassidy, P.E. (1989). Permeation and diffusion of environmental pollutants through flexible polymers. J. Appl. Polym. Sci., 38, 227–236. DOI: 10.1002/app.1989.070380203. Open DOISearch in Google Scholar

Pourjavadi, A. & Barzegar, S. (2009). Smart Pectin based Superabsorbent Hydrogel as a Matrix for Ibubrofen as an Oral Non-steroidal Anti-inflammatory Drug Delivery. Starch/Strake. 61, 173–187. DOI: 10.1002/star.200800032. Open DOISearch in Google Scholar

Aziz, T., Naveed, M., Sarwar, A., Makhdoom, S.I., Mughal, M.S., Ali, U., Yang, Z., Shahzad, M., Sameeh, M.Y. & Alruways, M.W., et al. 2022. Functional Annotation of Lactiplantibacillus plantarum 13-3 as a Potential Starter Probiotic Involved in the Food Safety of Fermented Products. Molecules, 27, 5399. DOI: 10.3390/molecules27175399. Open DOISearch in Google Scholar

Naveed, M., Makhdoom, S.I., Rehman, S.U., Aziz, T., Bashir, F., Ali, U., Alharbi, M., Alshammari, A. & Alasmari, A.F. (2023). Biosynthesis and Mathematical Interpretation of Zero-Valent Iron NPs Using Nigella sativa Seed Tincture for Indemnification of Carcinogenic Metals Present in Industrial Effluents. Molecules, 28, 3299. DOI: 10.3390/molecules28083299. Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik