Uneingeschränkter Zugang

Synthesis of isoamyl acetate using protein-coated microcrystals of different lipases

   | 30. Juni 2023

Zitieren

Belitz, H.-D., Grosch, W. & Schieberle, P. (2004) Aroma compounds. In H.-D. Belitz, W. Grosch & P. Schieberle (Eds.), Food chemistry (pp. 342–408). Heidelberg: Springer Berlin Heidelberg. Search in Google Scholar

Sales, A., Paulino, B.N., Pastore, G.M. & Bicas, J.L. (2018). Biogeneration of aroma compounds. Curr. Opin. Food Sci. 19, 77–84. DOI: 10.1016/j.cofs.2018.03.005. Open DOISearch in Google Scholar

Paravisini, L. & Guichard, E. (2016). Interactions between aroma compounds and food matrix. In E. Guichard, C., Salles, M., Morzel & A.-M. Le Bon (Eds.), Flavour from food to perception (p p. 208–234). Chichester, West Sussex; Hoboken, NJ: John Wiley & Sons Inc. Search in Google Scholar

Akacha, N.B. & Gargouri, M. (2015). Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food Bioprod. Process. 94, 675–706. DOI: 10.1016/j.fbp.2014.09.011. Open DOISearch in Google Scholar

Saffarionpour, S. & Ottens, M. (2018). Recent advances in techniques for flavor recovery in liquid food processing. Food Eng. Rev. 10, 81–94. DOI: 10.1007/s12393-017-9172-8. Open DOISearch in Google Scholar

Paulino, B.N., Sales, A., Felipe, L., Pastore, G.M., Molina, G. & Bicas, J.L. (2021). Recent advances in the microbial and enzymatic production of aroma compounds. Curr. Opin. Food Sci. 37, 98–106. DOI: 10.1016/j.cofs.2020.09.010. Open DOISearch in Google Scholar

Srivastava, S., Modak, J. & Giridhar, M. (2002). Enzymatic synthesis of flavors in supercritical carbon dioxide. Ind. Eng. Chem. Res. 41, 1940–1945. DOI: 10.1021/ie010651j. Open DOISearch in Google Scholar

Nongonierma, A., Voilley, A., Cayot, P., Le Quéré, J.-L. & Springett, M. (2006). Mechanisms of extraction of aroma compounds from foods, using adsorbents. Effect of various parameters. Food Rev. Int. 22, 51–94. DOI: 10.1080/87559120500379951. Open DOISearch in Google Scholar

Castro-Muñoz, R. (2019). Pervaporation: The emerging technique for extracting aroma compounds from food systems. J. Food Eng. 253, 27–39. DOI: 10.1016/j.jfoodeng.2019.02.013. Open DOISearch in Google Scholar

Lomelí-Martín, A., Martínez, L.M., Welti-Chanes, J. & Escobedo-Avellaneda, Z. (2021). Induced changes in aroma compounds of foods treated with high hydrostatic pressure: A review. Foods. 10, 878. DOI: 10.3390/foods10040878. Open DOISearch in Google Scholar

Mortzfeld, F.B., Hashem, C., Vranková., K., Winkler, M. & Rudroff, F. (2020). Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnol. J. 15, 2000064. DOI: 10.1002/biot.202000064. Open DOISearch in Google Scholar

Dias, A.L.B., Hatami, T., Martínez, J. & Ciftci, O.N. (2020). Biocatalytic production of isoamyl acetate from fusel oil in supercritical CO2. J. Supercrit. Fluids. 164, 104917. DOI: 10.1016/j.supflu.2020.104917. Open DOISearch in Google Scholar

Dudu, A.I., Lăcătuş, M.A., Bencze, L.C., Paizs, C. & Toşa, M.I. (2021). Green process for the enzymatic synthesis of aroma compounds mediated by lipases entrapped in tailored sol–gel matrices. ACS Sustainable Chem. Eng. 9, 5461–5469. DOI: 10.1021/acssuschemeng.1c00965. Open DOISearch in Google Scholar

Yildirim, D. & Tükel, S.S. (2013). Immobilized Pseudomonas sp. lipase: A powerful biocatalyst for asymmetric acylation of (±)-2-amino-1-phenylethanols with vinyl acetate. Process Biochem. 48, 819–830. DOI: 10.1016/j.procbio.2013.04.019. Open DOISearch in Google Scholar

Kapoor, M. & Gupta, M.N. (2012). Lipase promiscuity and its biochemical applications. Process Biochem. 47, 555–569. DOI: 10.1016/j.procbio.2012.01.011. Open DOISearch in Google Scholar

Yang, T.-S., Liu, T.-T. & Liu, H.-I. (2017). Effects of aroma compounds and lipid composition on release of functional substances encapsulated in nanostructured lipid carriers lipolyzed by lipase. Food Hydrocolloids. 62, 280–287. DOI: 10.1016/j.foodhyd.2016.08.019. Open DOISearch in Google Scholar

Salgado, C.A., dos Santos, C.I.A. & Vanetti, M.C.D. (2022). Microbial lipases: Propitious biocatalysts for the food industry. Food Biosci. 45, 101509. DOI: 10.1016/j.fbio.2021.101509. Open DOISearch in Google Scholar

Dias, A.L.B., dos Santos, P. & Martínez, J. (2018). Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: A review. J. CO2 Util. 23, 159–178. DOI: 10.1016/j.jcou.2017.11.011. Open DOISearch in Google Scholar

Mehta, A., Grover, C., Bhardwaj, K.K & Gupta, R. (2020). Application of lipase purified from Aspergillus fumigatus in the syntheses of ethyl acetate and ethyl lactate. J. Oleo Sci. 69, 23–29. DOI: 10.5650/jos.ess19202. Open DOISearch in Google Scholar

Yildirim, D., Baran, E., Ates, S., Yazici, B. & Tukel, S.S. (2019). Improvement of activity and stability of Rhizomucor miehei lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters. Biocatal. Biotransform. 37, 210–223. DOI: 10.1080/10242422.2018.1530766. Open DOISearch in Google Scholar

Ozyilmaz, G. & Yağız, E. (2017). Comparison of the performance of entrapped and covalently immobilized lipase in the synthesis of pear flavor. Turk. J. Biochem. 42, 339–347. DOI: 10.1515/tjb-2016-0110. Open DOISearch in Google Scholar

Patel, V., Gajera, H., Gupta, A., Manocha, L. & Madamwar D. (2015). Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochem. Eng. J. 95, 62–70. DOI: 10.1016/j.bej.2014.12.007. Open DOISearch in Google Scholar

Kurtovic, I., Marshall, S.N., Cleaver, H.L. & Miller, M.R. (2016). The use of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk. Food Chem. 199, 323–329. DOI: 10.1016/j.foodchem.2015.12.027. Open DOISearch in Google Scholar

Castiglioni, G.Z., Bettio, G., Matte, C.R., Jacques, R.A., Dos Santos Polidoro, A., Rosa, C.A. & Ayub, M.A.Z. (2020). Production of volatile compounds by yeasts using hydrolysed grape seed oil obtained by immobilized lipases in continuous packed-bed reactors. Bioprocess Biosyst. Eng. 43, 1391–1402. DOI: 10.1007/s00449-020-02334-4. Open DOISearch in Google Scholar

Kreiner, M. & Parker, M.C. (2005). Protein-coated microcrystals for use in organic solvents: Application to oxidoreductases. Biotechnol. Lett. 27, 1571–1577. DOI: 10.1007/s10529-005-1800-3. Open DOISearch in Google Scholar

Yildirim, D., Toprak, A., Alagöz, D. & Tukel, S.S. (2019). Protein-coated microcrystals of Prunus armeniaca hydroxynitrile lyase: an effective and recyclable biocatalyst for synthesis of (R)-mandelonitrile. Chem. Pap. 73, 185–193. DOI: 10.1007/s11696-018-0577-5. Open DOISearch in Google Scholar

Monteiro, R.R.C., dos Santos, J.C.S., Alcántara, A.R. & Fernandez-Lafuente R. (2020). Enzyme-coated micro-crystals: An almost forgotten but very simple and elegant immobilization strategy. Catalysts. 10, 891. DOI: 10.3390/catal10080891. Open DOISearch in Google Scholar

Fehér, E., Illeová, V., Kelemen-Horváth, I., Bélafi-Bakó, K., Polakovič, M. & Gubicza, L. (2008). Enzymatic production of isoamyl acetate in an ionic liquid–alcohol biphasic system. J. Mol. Catal. B: Enzym. 50, 28–32. DOI: 10.1016/j.molcatb.2007.09.019. Open DOISearch in Google Scholar

Zare, M., Golmakani, M.-T. & Niakousari, M. (2019). Lipase synthesis of isoamyl acetate using different acyl donors: Comparison of novel esterification techniques. LWT. 2019, 101, 214–219. DOI: 10.1016/j.lwt.2018.10.098. Open DOISearch in Google Scholar

Zare, M., Golmakani, M.-T. & Sardarian, A. (2020). Green synthesis of banana flavor using different catalysts: a comparative study of different methods. Green Chem. Lett. Rev. 13, 83–92. DOI: 10.1080/17518253.2020.1737739. Open DOISearch in Google Scholar

Quilter, M.G., Hurley, J.C., Lynch, F.J. & Murphy, M.G. (2003). The production of isoamyl acetate from amyl alcohol by Saccharomyces cerevisiae. J. Inst. Brew. 109, 34–40. DOI: 10.1002/j.2050-0416.2003.tb00591.x. Open DOISearch in Google Scholar

Ando, H., Kurata, A. & Kishimoto, N. (2015). Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J. Appl. Microbiol. 118, 873–880. DOI: 10.1111/jam.12764. Open DOISearch in Google Scholar

Kanwar, S.S., Sharma, C., Verma, M.L., Chauhan, S., Chimni, S.S. & Chauhan, G.S. (2008). Short-chain ester synthesis by transesterification employing poly (MAc-co-DMA-cl-MBAm) hydrogel-bound lipase of Bacillus coagulans MTCC-6375. J. Appl. Polym. Sci. 109, 1063–1071. DOI: 10.1002/app.25320. Open DOISearch in Google Scholar

Yildirim, D., Tükel, S.S., Alptekin, Ö. & Alagöz, D. (2014). Optimization of immobilization conditions of Mucor miehei lipase onto Florisil via polysuccinimide spacer arm using response surface methodology and application of immobilized lipase in asymmetric acylation of 2-amino-1-phenylethanols. J. Mol. Catal. B: Enzym. 100, 91–103. DOI: 10.1016/j.molcatb.2013.12.003. Open DOISearch in Google Scholar

Yadav, G.D. & Borkar, I.V. (2009). Kinetic and mechanistic investigation of microwave-assisted lipase catalyzed synthesis of citronellyl acetate. Ind. Eng. Chem. Res. 48, 7915–7922. DOI: 10.1021/ie800591c. Open DOISearch in Google Scholar

Cai, X., Wang, W., Lin, L., He, D., Shen, Y., Wei, W. & Wei, D. (2017). Cinnamyl esters synthesis by lipase-catalyzed transesterification in a non-aqueous system. Catal. Lett. 147, 946–952. DOI: 10.1007/s10562-017-1994-8. Open DOISearch in Google Scholar

Yadav, G.D. & Devendran, S. (2012). Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochem. 47, 496–502. DOI: 10.1016/j.procbio.2011.12.008. Open DOISearch in Google Scholar

Ozyilmaz, G. & Gezer, E. (2010). Production of aroma esters by immobilized Candida rugosa and porcine pancreatic lipase into calcium alginate gel. J. Mol. Catal. B: Enzym. 64, 140–145. DOI: 10.1016/j.molcatb.2009.04.013. Open DOISearch in Google Scholar

Hari, Krishna, S., Divakar, S., Prapulla., S.G. & Karanth, N.G. (2001). Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor miehei. J. Biotechnol. 87, 193–201. DOI: 10.1016/S0168-1656(00)00432-6. Open DOISearch in Google Scholar

López-Fernández, J., Benaiges, M.D., Sebastian, X., Bueno, J.M. & Valero, F. (2022). Producing natural flavours from isoamyl alcohol and fusel oil by using immobilised Rhizopus oryzae lipase. Catalysts. 12, 639. DOI: 10.3390/catal12060639. Open DOISearch in Google Scholar

de Oliveira, T.P., Santos, M.P.F., Brito, M.J.P. & Veloso, C.M. (2022). Incorporation of metallic particles in activated carbon used in lipase immobilization for production of isoamyl acetate. J. Chem. Technol. Biotechnol. 97, 1736–1746. DOI: 10.1002/jctb.7043. Open DOISearch in Google Scholar

Ghamgui, H., Karra-Chaâbouni, M., Bezzine, S., Miled, N. & Gargouri, Y. (2006). Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb. Technol. 38, 788–794. DOI: 10.1016/j.enzmictec.2005.08.011. Open DOISearch in Google Scholar

Padilha, G.S., Tambourgi, E.B. & Alegre, R.M. (2018). Evaluation of lipase from Burkholderia cepacia immobilized in alginate beads and application in the synthesis of banana flavor (isoamyl acetate). Chem. Eng. Commun. 205, 23–33. DOI: 10.1080/00986445.2017.1370707. Open DOISearch in Google Scholar

Romero, M.D., Calvo, L., Alba, C., Daneshfar, A. & Ghaziaskar, H.S. (2005). Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb. Technol. 37, 42–48. DOI: 10.1016/j.enzmictec.2004.12.033. Open DOISearch in Google Scholar

Güvenç, A., Kapucu, N. & Mehmetoğlu, Ü. (2002). The production of isoamyl acetate using immobilized lipases in a solvent-free system. Process Biochem. 38, 379–386. DOI: 10.1016/S0032-9592(02)00099-7. Open DOISearch in Google Scholar

Wolfson, A., Atyya, A., Dlugy, C. & Tavor, D. (2010). Glycerol triacetate as solvent and acyl donor in the production of isoamyl acetate with Candida antarctica lipase B. Bioprocess Biosyst. Eng. 33, 363–366. DOI: 10.1007/s00449-009-0333-x. Open DOISearch in Google Scholar

Nyari, N., Paulazzi, A., Zamadei, R., Steffens, C., Zabot, G.L., Tres, M.V., Zeni, J., Venquiaruto, L., Dallago, R.M. (2018). Synthesis of isoamyl acetate by ultrasonic system using Candida antarctica lipase B immobilized in polyurethane. J. Food Process Eng. 41, e12812. DOI: 10.1111/jfpe.12812. Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik