Uneingeschränkter Zugang

Self-catalysed hydrogenation of heavy oil and coal mixtures


Zitieren

Prajapati, R., Kohli, K. & Maity, S.K. (2021). Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review. Fuel, 288, 119686. DOI: 10.1016/j.fuel.2020.119686. Open DOISearch in Google Scholar

Sun, J.M., Liu, X. & Li, D. (2014). Study on kinetics of medium temperature coal tar hydrocracking. Acta Petrolei Sinica(Petroleum Processing Section). 30(2), 291–297. DOI: 10.3969/j.issn.1001-8719.2014.02.016. Open DOISearch in Google Scholar

Kang, K.H., Kim, G.T. & Park, S. (2019). A review on the Mo-precursors for catalytic hydroconversion of heavy oil. J. Ind. Eng. Chem. 76, 1–16. DOI: 10.1016/j.jiec.2019.03.022. Open DOISearch in Google Scholar

Bai, P., Etim, U.J. & Yan, Z. (2019). Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. Catal Rev. 61(3), 333–405. DOI: 10.1080/01614940.2018.1549011. Open DOISearch in Google Scholar

Nguyen, M.T., Nguyen, N.T. & Cho, J. (2016). A review on the oil-soluble dispersed catalyst for slurry-phase hydrocracking of heavy oil. J. Ind. Eng. Chem. 43, 1–12. DOI: 10.1016/j.jiec.2016.07.057. Open DOISearch in Google Scholar

Du, H.X,. Cao, X.X, & Li, L. (2021). Progress of phase transfer removal of heteroatoms from heavy crude oil. Acta Petrolei Sinica(Petroleum Processing Section). 37(2): 458–468. DOI: 10.3969/j.issn.1001-8719.2021.02.026. Open DOISearch in Google Scholar

Shen, H.P., Dong, M. & Hou, H.D. (2021). Development of clean and efficient processing technology for inferior residue. Petroleum Processing and Petrochemicals. 52(10), 136–143. Search in Google Scholar

Wang, T., Hou, H.D. & Long, J. (2021). A review on sulfurization of dispersed catalyst for residue hydrotreating. Modern Chemical Industry. 41(3), 68–73. DOI: 10.16606/j.cnki.issn 0253-4320.2021.03.014. Open DOISearch in Google Scholar

Luo, H., Sun, J. & Deng, W. (2022). Preparation of Oil-soluble Fe-Ni sulfide nanoparticles for Slurry-Phase hydrocracking of residue. Fue. 321, 124029. DOI: 10.1016/j.fuel.2022.124029. Open DOISearch in Google Scholar

Al-Attas, T.A., Ali, S.A. & Zahir, M.H. (2019). Recent advances in heavy oil upgrading using dispersed catalysts. Energy & Fuels. 33(9), 7917–7949. DOI: 10.1021/acs.energyfuels.9b01532. Open DOISearch in Google Scholar

Melo-Banda, J., Lam-Maldonado, M. & Rodríguez-Gómez, F. (2022). Ni: Fe: Mo and Ni: Co: Mo nanocatalysts to hydroprocessing to heavy crude oil: Effect of continue phase in the final metallic nanoparticles size. Catal Today. 392, 72–80. DOI: 10.1016/j.cattod.2021.09.018. Open DOISearch in Google Scholar

Wang, Z.C., Tu, M.Y. & Pan, C.X. (2022). Thermal stability of heavy oil and lts effect on co-hydroliquefaction of heavy oil and coal. Coal Conversion. 45(6), 62–71. DOI: 10.19726/j.cnki.ebcc.202206008. Open DOISearch in Google Scholar

Yang, T., Liu, C. & Li, C. (2020). Promotion effect with dispersed Fe-Ni-S catalyst to facilitate hydrogenolysis of lignite and heavy residue. Fuel. 259, 116303. DOI: 10.1016/j.fuel.2019.116303. Open DOISearch in Google Scholar

Li, C., Meng, H. & Yang, T. (2018). Study on catalytic performance of oil-soluble iron-nickel bimetallic catalyst in coal/oil co-processing. Fuel. 219, 30–36. DOI: 10.1016/j.fuel.2018.01.068. Open DOISearch in Google Scholar

Bacaud, R. (2014). Dispersed phase catalysis: Past and future. Celebrating one century of industrial development. Fuel. 117, 624–632. DOI: 10.1016/j.fuel.2013.09.027. Open DOISearch in Google Scholar

Kang, K.H., Nguyen, N.T. & Seo, P.W. (2020). Slurry-phase hydrocracking of heavy oil over Mo precursors: Effect of triphenylphosphine ligands. J. Catal. 384, 106–121. DOI: 10.1016/j.jcat.2020.02.007. Open DOISearch in Google Scholar

Yang, T., Zheng, J. & Liu, C. (2022). Utilization of coal liquefaction solid residue waste as an effective additive for enhanced catalytic performance. Fuel. 329, 125454. DOI: 10.1016/j.fuel.2022.125454. Open DOISearch in Google Scholar

Thakur, D.S. & Thomas, M.G. (1985). Catalyst deactivation in heavy petroleum and synthetic crude processing: a review. Appl. Catal., 15(2), 197–225. DOI: 10.1016/S0166-9834(00)81837-0. Open DOISearch in Google Scholar

Kressmann, S., Morel, F. & Harlé, V. (1998). Recent developments in fixed-bed catalytic residue upgrading. Catal Today., 43(3–4), 203–15. DOI: 10.1016/S0920-5861(98)00149-7. Open DOISearch in Google Scholar

Furimsky, E., & Massoth, F.E. (1999). Deactivation of hydroprocessing catalysts. Catal Today., 52(4), 381–495. DOI: 10.1016/S0920-5861(99)00096-6. Open DOISearch in Google Scholar

Rana, M.S., Sámano, V. & Ancheyta, J. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel., 86(9), 1216–1231. DOI: 10.1016/j.fuel.2006.08.004. Open DOISearch in Google Scholar

Rana, M.S., Ancheyta, J. & Maity, S. (2008). Comparison between refinery processes for heavy oil upgrading: a future fuel demand. Int. J. Oil Gas Coal Technol., 1(3), 250–282. DOI: 10.1504/IJOGCT.2008.019845. Open DOISearch in Google Scholar

Liu, Y., Gao, L. & Wen, L. (2009). Recent advances in heavy oil hydroprocessing technologies. Recent Patents on Chem. Engin., 2009, 2(1), 22–36. Search in Google Scholar

Callejas, M.A., Martınez, M. & Blasco, T. (2001). Coke characterisation in aged residue hydrotreating catalysts by solid-state 13C-NMR spectroscopy and temperature-programmed oxidation. Appl. Catal., 218(1–2), 181–188. DOI: 10.1016/S0926-860X(01)00640-8. Open DOISearch in Google Scholar

Callejas, M.A. & Martínez, M.T. (1999). Hydrocracking of a Maya residue. Kinetics and product yield distributions. Ind. Eng. Chem. Res. 38(9), 3285–3289. DOI: 10.1021/ie9900768. Open DOISearch in Google Scholar

Rana, M.S., Ancheyta, J. & Sahoo, S.K. (2014). Carbon and metal deposition during the hydroprocessing of Maya crude oil. Catal. Today., 220, 97–105. DOI: 10.1016/j.cattod.2013.09.030. Open DOISearch in Google Scholar

Delmon, B.P. (1980). Grange in: B. Delmon and GF Froment (Eds): Catalyst Deactivation. Stud. Surf. Sci. Catal., 6, 507. Search in Google Scholar

Stanislaus, A. & Marafi, M. (2005). Investigation of the mechanism of sediment formation in residual oil hydrocracking process through characterization of sediment deposits. Catal. Today., 109(1–4), 167–177. DOI: 10.1016/j.cattod.2005.08.014. Open DOISearch in Google Scholar

Absi-Halabi, M., Stanislaus, A. & Trimm, D. (1991). Coke formation on catalysts during the hydroprocessing of heavy oils. Appl. Catal., 72(2), 193–215. DOI: 10.1016/0166-9834(91)85053-X. Open DOISearch in Google Scholar

Ancheyta, J. (2010). Asphaltenes: chemical transformation during hydroprocessing of heavy oils. New York, USA: Taylor & Francis Group. Search in Google Scholar

Moulijn, J.A., Van Diepen, A. & Kapteijn, F. (2001). Catalyst deactivation: is it predictable? What to do? Appl. Catal., 212(1–2), 3–16. DOI: 10.1016/S0926-860X(00)00842-5. Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik