Uneingeschränkter Zugang

Mechanism and optimum pressure for sliding-mode nanogenerator

 und    | 29. März 2023

Zitieren

Liu, D., Yin, X., Guo, H., Zhou, L., Li, X., Zhang, C., Wang, J. & Wang, Z.L. (2019). A Constant Current Triboelectric Nanogenerator Arising From Electrostatic Breakdown. Sci. Adv. 5, eaav6437. DOI: 10.1126/sciadv.aav6437.645068930972365 Open DOISearch in Google Scholar

Zhou, Y., Shen, M., Cui, X., Shao, Y., Li, L. & Zhang, Y. (2021). Triboelectric Nanogenerator Based Self-Powered Sensor for Artificial Intelligence. Nano Energy 84, 105887. DOI: 10.1016/j.nanoen.2021.105887. Open DOISearch in Google Scholar

Wang, Z.L. (2020). Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution. Adv. Energy Mater. 10, pp. 2000137. DOI: 10.1002/aenm.202000137. Open DOISearch in Google Scholar

Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y. & Wang, Z.L. (2013). Theory of Sliding-Mode Triboelectric Nanogenerators. Adv. Mater. 25, 6184–6193. DOI: 10.1002/adma.201302808.24038597 Open DOISearch in Google Scholar

Wang, Z.L. (2020). On the First Principle Theory of Nanogenerators from Maxwell’s Equations. Nano Energy 68, 104272. DOI: 10.1016/j.nanoen.2019.104272. Open DOISearch in Google Scholar

Shen, X., Wang, A.E., Sankaran, R.M. & Lacks, D.J. (2016). First-Principles Calculation of Contact Electrification and Validation by Experiment. J. Electrostat. 82, 11–16. DOI: 10.1016/j.elstat.2016.04.006. Open DOISearch in Google Scholar

Wu, J., Wang, X., Li, H., Wang, F. & Hu, Y. (2019). First-Principles Investigations on the Contact Electrification Mechanism between Metal and Amorphous Polymers for Triboelectric Nanogenerators. Nano Energy 63, 103864. DOI: 10.1016/j.nanoen.2019.103864. Open DOISearch in Google Scholar

Tan, D., Willatzen, M. & Wang, Z.L. (2021). Electron Transfer in the Contact-Electrification between Corrugated 2D Materials: A First-Principles Study. Nano Energy 79, 105386. DOI: 10.1016/j.nanoen.2020.105386. Open DOISearch in Google Scholar

Fatti, G., Righi, M.C., Dini, D. & Ciniero, A. (2020). Ab Initio Study of Polytetrafluoroethylene Defluorination for Tribocharging Applications. ACS Appl. Polym. Mater. 2, 5129–5134. DOI: 10.1021/acsapm.0c00911. Open DOISearch in Google Scholar

Fu, R., Shen, X. & Lacks, D.J. (2017). First-Principles Study of the Charge Distributions in Water Confined between Dissimilar Surfaces and Implications in Regard to Contact Electrification. J. Phys. Chem. C 121, 12345–12349. DOI: 10.1021/acs.jpcc.7b04044. Open DOISearch in Google Scholar

Song, J. & Zhao, G. (2019). A Theoretical Model to Predict Contact Electrification. Tribol. Int. 136, 234–239. DOI: 10.1115/1.4053580. Open DOISearch in Google Scholar

Kulbago, B.J. & Chen, J. (2020). Nonlinear Potential Field in Contact Electrification. J. Electrostat. 108, 103511. DOI: 10.1016/j.elstat.2020.103511. Open DOISearch in Google Scholar

Xu, C., Zhang, B., Wang, A.C., Cai, W., Zi, Y., Feng, P. & Wang, Z.L. (2019). Effects of Metal Work Function and Contact Potential Difference on Electron Thermionic Emission in Contact Electrification. Adv. Funct. Mater. 29, 1903142. DOI: 10.1002/adfm.201903142. Open DOISearch in Google Scholar

Niu, S., Zhou, Y.S., Wang, S., Liu, Y., Lin, L., Bando, Y. & Wang, Z.L. (2014). Simulation Method for Optimizing the Performance of an Integrated Tribo-electric Nanogenerator Energy Harvesting System. Nano Energy 8, 150–156. DOI: 10.1016/j.nanoen.2014.05.018. Open DOISearch in Google Scholar

Niu, S., Liu, Y., Zhou, Y.S., Wang, S., Lin, L. & Wang, Z.L. (2015). Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage. IEEE Trans. Electron Devices 62, 641–647. DOI: 10.1109/TED.2014.2377728. Open DOISearch in Google Scholar

Dai, K., Liu, D., Yin, Y., Wang, X., Wang, J., You, Z., Zhang, H. & Wang, Z.L. (2022). Transient Physical Modeling and Comprehensive Optimal Design of Air-breakdown Direct-Current Triboelectric Nano-generators. Nano Energy 92, 106742. DOI: 10.1016/j. nanoen.2021.106742. Open DOISearch in Google Scholar

Min, G., Manjakkal, L., Mulvihill, D.M. & Dahiya, R.S. (2020). Triboelectric Nanogenerator with Enhanced Performance via an Optimized Low Permittivity Substrate. IEEE Sens. J. 20, 6856–6862. DOI: 10.1109/JSEN.2019.2938605. Open DOISearch in Google Scholar

Niu, S. & Wang, Z.L. (2015). Theoretical Systems of Triboelectric Nanogenerators. Nano Energy 14, 161–192. DOI: 10.1016/j.nanoen.2014.11.034. Open DOISearch in Google Scholar

Jiang, T., Zhang, L.M., Chen, X., Han, C.B., Tang, W., Zhang, C., Xu, L. & Wang, Z.L. (2015). Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy. ACS Nano 9, 12562–12572. DOI: 10.1021/acsnano.5b06372.26567754 Open DOISearch in Google Scholar

Scandolo, S., Giannozzi, P., Cavazzoni, C., de Gironcoli, S., Pasquarello, A. & Baroni, S. (2017). First-Principles Codes for Computational Crystallography in the Quantum-ESPRESSO Package. J. Phys. Condens. Matter. 29, 465901. DOI: 10.1524/zkri.220.5.574.65062. Open DOISearch in Google Scholar

Fatti, G., Righi, M.C., Dini, D. & Ciniero, A. (2020). Ab Initio Study of Polytetrafluoroethylene Defluorination and Its Possible Effects on Tribocharging. ACS Appl. Polym. Mater. 2, 5129–5134. DOI: 10.1021/acsapm.0c00911. Open DOISearch in Google Scholar

Clark, E.S. (1999). The molecular conformations of polytetrafluoroethylene: forms II and IV. Polymer 40, 4659–4665. DOI: 10.1016/S0032-3861(99)00109-3. Open DOISearch in Google Scholar

D’Ilario, L. & Giglio, E. (1974). Calculation of the van der Waals Potential Energy for Polyethylene and Polytetrafluoroethylene as Two-Atom and Three-Atom Chains: Rotational Freedom in the Crystals. Acta Cryst., B30, 372–378. DOI: 10.1107/S0567740874002846. Open DOISearch in Google Scholar

Zhao, P., Soin, N., Prashanthi, K., Chen, J., Dong, S., Zhou, E., Zhu, Z., Narasimulu, A.A., Montemagno, C.D., Yu, L. & Luo, J. (2018). Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators. ACS Appl. Mater. Interfaces 10, 5880–5891. DOI: 10.1021/acsami.7b18442.29346721 Open DOISearch in Google Scholar

Babuska, T.F., Pitenis, A.A., Jones, M.R., Nation, B.L., Sawyer, W.G. & Argibay, N. (2016). Temperature-Dependent Friction and Wear Behavior of PTFE and MoS2. Tribol. Lett. 63, 1–7. DOI: 10.1007/s11249-016-0702-y. Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik