Uneingeschränkter Zugang

Effect of alkali metal promoters on catalytic performance of Co-based catalysts in selective hydrogenation of aniline to cyclohexylamine


Zitieren

Chaudhari, Ch., Sato, K., Ikeda, Y., Terada, K., Abe, N. & Nagaoka, K. (2021). One-pot synthesis of cyclohexylamine and N-aryl pyrroles via hydrogenation of nitroarenes over the Pd0.5Ru0.5-PVP catalyst. New. J. Chem. 45, 9743–9746. DOI: 10.1039/D1NJ00922B. Open DOISearch in Google Scholar

Araki, S., Nakanishi, K., Tanaka, A. & Kominami, H. (2020). A ruthenium and palladium bimetallic system superior to a rhodium co-catalyst for TiO2-photocatalyzed ring hydrogenation of aniline to cyclohexylamine. J. Catal. 389, 212–217. DOI: 10.1016/j.jcat.2020.05.035. Open DOISearch in Google Scholar

Ásgeirsson, B., Markússon, S., Hlynsdóttir, S.S., Hel-land, R. & Hjörleifsson, J.G. (2020). X-ray crystal structure of Vibrio alkaline phosphatase with the non-competitive inhibitor cyclohexylamine. Biochem. Biophys. Rep. 24, 100830–100840. DOI: 10.1016/j.bbrep.2020.100830. Open DOISearch in Google Scholar

Ranjbar, S., Soltanabadi, A. & Fakhri, Z. (2016). Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine. J. Chem. Eng. Data. 61(9), 3077–3089. DOI: 10.1021/acs.jced.6b00158. Open DOISearch in Google Scholar

Senthil, K., Elangovan, K., Senthil, A. & Vinitha, G. (2021). Synthesis, growth, optical, mechanical, thermal, dielectric and third order nonlinear optical properties of cyclohexylamine derivative single crystals. Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 247, 119063–119071. DOI: 10.1016/j.saa.2020.119063. Open DOISearch in Google Scholar

Beepala, S.K., Mitta, H., Sk, H., Balla, P. & Komandur, V.R.Ch. (2022). Reductive amination of cyclohexanol/cyclohexanone to cyclohexylamine using SBA-15 supported copper catalysts. J. Indian. Chem. Soc. 99(6), 100451–100458. DOI: 10.1016/j.jics.2022.100451. Open DOISearch in Google Scholar

Churro, R., Mendes, F., Araújo, P., Ribeiro, F., Peres, J. & Madeira, L.M. (2021). Statistical modelling of the amination reaction of cyclohexanol to produce cyclohexylamine over a commercial Ni-based catalyst. Chem. Eng. Res. Des. 170, 189–200. DOI: 10.1016/j.cherd.2021.03.029. Open DOISearch in Google Scholar

Wen, J., You, K., Liu, X., Jian, J., Zhao, F., Liu, P., Ai, Q. & Luo, H. (2019). Highly selective one-step catalytic amination of cyclohexene to cyclohexylamine over HZSM-5. Catal. Commun. 127, 64–68. DOI: 10.1016/j.catcom.2019.05.007. Open DOISearch in Google Scholar

Kowalewski, E., Krawczyk, M., Słowik, G., Kocik, J., Pieta, I.S., Chernyayeva, O., Lisovytskiy, D., Matus, K. & Śrębowata, A. (2021). Continuous-flow hydrogenation of nitrocyclohexane toward value-added products with CuZnAl hydrotalcite derived materials. Appl. Catal. A: Gen. 618, 118134–118145. DOI: 10.1016/j.apcata.2021.118134. Open DOISearch in Google Scholar

Axet, M.R., Conejero, S. & Gerber, I.C. (2018). Ligand Effects on the Selective Hydrogenation of Nitrobenzene to Cyclohexylamine Using Ruthenium Nanoparticles as Catalysts. Appl. Nano. Mater. 1(10), 5885–5894. DOI: 10.1021/acsanm.8b01549. Open DOISearch in Google Scholar

Li, X., Wang, Z., Mao, S., Chen, Y., Tang, M., Li, H. & Wang, Y. (2018). Insight into the Role of Additives in Catalytic Synthesis of Cyclohexyl-amine from Nitrobenzene. Chin. J. Chem. 36, 1191–1196. DOI: 10.1002/cjoc.201800380. Open DOISearch in Google Scholar

Chatterjee, M., Sato, M., Kawanami, H., Ishizaka, T., Yokoyama, T. & Suzuki, T. (2011). Hydrogenation of aniline to cyclohexylamine in supercritical carbon dioxide: Significance of phase behaviour. Appl. Catal. A: Gen. 396, 186–193. DOI: 10.1016/j.apcata.2011.02.016. Open DOISearch in Google Scholar

Greenfield, H. (1964). Hydrogenation of Aniline to Cyclohexylamine with Platinum Metal Catalysts. J. Org. Chem. 29(10), 3082–3084. DOI: 10.1021/jo01033a512. Open DOISearch in Google Scholar

Yin, Z., Zeng, H., Wu, J., Zheng, S. & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a “Hydrogen-Borrowing” Strategy. ACS Catal. 6(10), 6546–6550. DOI: 10.1021/acscatal.6b02218. Open DOISearch in Google Scholar

Valeš, R., Dvořák, B. & Krupka, J. (2021). Thermodynamic analysis on disproportionation process of cyclohexylamine to dicyclohexylamine. Pol. J. Chem. Tech. 23(3), 63–48. DOI: 10.2478/pjct-2021-0029. Open DOISearch in Google Scholar

Hagihara, H. & Etsuro, E. (1965). The Catalytic Hydrogenation of Aniline. Bull. Chem. Soc. Jpn. 38(12), 2094–2100. DOI: 10.1246/bcsj.38.2094. Open DOISearch in Google Scholar

Mink, G. & Horváth, L. (1998). Hydrogenation of aniline to cyclohexylamine on NaOH-promoted or lanthana supported nickel. React. Kinet. Catal. Lett. 65, 59–65. DOI: 10.1007/BF02475316. Open DOISearch in Google Scholar

Roose, P., Eller, K., Henkes, E., Rossbacher, R. & Höke, H. (2015). Amines, Aliphatic. In Ullmanns Encyclopedia of Industrial Chemistry. Weinhelm, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/14356007.a02_001.pub2. Open DOISearch in Google Scholar

Narayanan, K. & Unnikrishnan, R.P. (1997). Comparison of hydrogen adsorption and aniline hydrogenation over co-precipitated Co/Al2O3 and Ni/Al2O3 catalysts. J. Chem. Soc., Faraday Trans. 93(10), 2009–2013. DOI: 10.1039/A608074J. Open DOISearch in Google Scholar

Nishimura, S., Yutaka, K., Yoshiharu, O. & Yoshio, F. (1971). The Ruthenium-Catalyzed Hydrogenation of Aromatic Amines Promoted by Lithium Hydroxide. Bull. Chem. Soc. Jpn. 44(1), 240–243. DOI: 10.1246/bcsj.44.240. Open DOISearch in Google Scholar

Nishimura, S., Shu, T., Hara, T. & Takagi, Y. (1966). The Hydroxide-Blacks of Ruthenium and Rhodium as Catalysts for the Hydrogenation of Organic Compounds. II. The Effects of Solvents and Added Alkalis in the Hydrogenation of Aniline. Bull. Chem. Soc. Jpn. 39(2), 329–333. DOI: 10.1246/bcsj.39.329. Open DOISearch in Google Scholar

Valeš, R., Dvořák, B. & Krupka, J. (2021). The effect of water and substituents of aromatic ring on its hydrogenation over a cobalt catalyst. Revealed in Reference: 8th International Conference on Chemical Technology, 3-5 May 2021 (pp. 98–103). Prague, Czech Republic: Czech Society of Industrial Chemistry. ebook: 978-80-88307-08-2. Search in Google Scholar

Díaz, A., Acosta, D.R., Odriozola, J.A. & Montes, M. (1997). Characterization of Alkali-Doped Ni/SiO2 Catalysts. J. Phys. Chem. B. 101(10), 1782–1790. DOI: 10.1021/jp963145u. Open DOISearch in Google Scholar

Dvořák, B. & Pašek, J. (1967). Einfluss der Zusammensetzung, der Herstellungsbedingungen und der Struktur des Kobaltkatalysators auf seine katalytische Aktivität für die Anilinhydrierung in der Gasphase. Collect. Czech. Chem. Commun. 32(10), 3476–3492. DOI: 10.1135/cccc19673476. Open DOISearch in Google Scholar

Strejcová, D. (2008). Effect of alkali metals carbonates on reduction rate of Co3O4 and strength of interactions between hydrogen and cobalt metal. Published bachelor thesis, University of Chemistry and Technology, Prague, Czech Republic. Search in Google Scholar

Veselá, D. (2016). Study of selected properties of cobalt catalysts. Published doctoral dissertation, University of Chemistry and Technology, Prague, Czech Republic. Search in Google Scholar

Li, D., Ichikuni, N., Shimazu, S. & Uematsu, T. (1998). Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation. Appl. Catal. A: Gen. 172(2), 351–358. DOI: 10.1016/S0926-860X(98)00139-2. Open DOISearch in Google Scholar

Shi, H., Yang, H., Gao, P., Chen, X., Liu, H., Zhong, L., Wang, H., Wei, W. & Sun, Y. (2018). Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons. Chin. J. Catal. 39(8), 1294–1302. DOI: 10.1016/S1872-2067(18)63086-4. Open DOISearch in Google Scholar

Pradeep, S.M., Weibin, L., Yijiao, J. & Huang, J. (2021). Cu-Based Nanocatalysts for CO2 Hydrogenation to Methanol. Energy Fuels. 35(10), 8558–8584. DOI: 10.1021/acs. energyfuels.1c00625. Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik