1. bookVolumen 24 (2022): Heft 3 (September 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-4741
Erstveröffentlichung
03 Jul 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Synthesis, physicochemical studies, fluorescence behavior, and anticancer properties of transition metal complexes with the pyridyl ligand

Online veröffentlicht: 16 Oct 2022
Volumen & Heft: Volumen 24 (2022) - Heft 3 (September 2022)
Seitenbereich: 35 - 40
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-4741
Erstveröffentlichung
03 Jul 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Cho, Y.I., Ward, M.L. & Rose, M.J. (2016). Substituent effects of N4 Schiff base ligands on the formation of fluoride-bridged dicobalt(II) complexes via B–F abstraction: structures and magnetism. Dalton. Trans. 45, 13466–13476. DOI: 10.1039/C6DT02104B. DOI öffnenSearch in Google Scholar

Pradeepa, C.P. & Das, S.K. (2013). Coordination and supramolecular aspects of the metal complexes of chiral N-salicyl-β-amino alcohol Schiff base ligands: Towards understanding the roles of weak interactions in their catalytic reactions. Coord. Chem. Rev. 257, 1699–1715. DOI: 10.1016/j.ccr.2013.01.028. DOI öffnenSearch in Google Scholar

Perlepe, P.S., Silva, L.C., Bekiari, V., Gagnon, K.J., Teat, S.J., Escuere, A. & Stamatatos, T.C. (2016). Structural diversity in NiII cluster chemistry: Ni5, Ni6, and {NiNa2}n complexes bearing the Schiff-base ligand N-naphthalidene-2-amino-5-chlorobenzoic acid. Dalton. Trans. 45, 10256–10270. DOI: 10.1039/C6DT01162D27240998 DOI öffnenSearch in Google Scholar

Roth, A., Spielberg, E.T. & Plass, W. (2007). Kit for Unsymmetric Dinucleating Double-Schiff-Base Ligands: Facile Access to a Versatile New Ligand System and Its First Hetero-bimetallic Copper–Zinc Complex. Inorg. Chem. 46, 4362–4364. DOI: 10.1021/ic070088i.17461577 DOI öffnenSearch in Google Scholar

Vardhan, H., Mehta, A., Nathab, I. & Verpoort, F. (2015). Dynamic imine chemistry in metal–organic polyhedral. RSC. Adv. 5, 67011–67030. DOI. 10.1039/C5RA10801B. DOI öffnenSearch in Google Scholar

(a) Bhattacharjee, A., Halder, S., Ghosh, K., Rizzoli, C. & Roy, P. (2017). Mono-, tri- and polynuclear copper(ii) complexes of Schiff-base ligands: synthesis, characterization and catalytic activity towards alcohol oxidation. New. J. Chem. 41, 5696–5706. DOI: 10.1039/C7NJ00846E. (b) Liu, X., González-Castro, A., Mutikainen, I., Pevec, A., Teat, S.J., Gamez, P., Costa, J.S., Bouwman, E. & Reedijk, J. (2016). Zinc and cadmium halide compounds with the tridentate ligand 2-(methylsulfanyl)-N-(pyridin-2-ylmethylidene)aniline showing yellow luminescence. Polyhedron. 110, 100–105. DOI: 10.1016/j.poly.2016.02.030. (c) O'Reilly, R.K., Gibson, V.C., White, A.J.P. & Williams, D.J. (2004). Five-coordinate iron(II) complexes bearing tridentate nitrogen donor ligands as catalysts for atom transfer radical polymerization. Polyhedron. 23, 2921–2928. DOI: 10.1016/j.poly.2004.09.001. (d) Bhaumik, P.K., Jana, S. & Chattopadhyay, S. (2012). Synthesis and characterization of square planar and square pyramidal copper(II) compounds with tridentate Schiff bases: Formation of a molecular zipper via H-bonding interaction. Inorg. Chim. Acta. 390, 167–177. DOI: 10.1016/j.ica.2012.04.004. (e) Gupta, K.C. & Sutar, A.K. (2008). Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 252, 1420–1450. DOI: 10.1016/j.ccr.2007.09.005. DOI öffnenSearch in Google Scholar

Al Rasbi, N.K. & Husband, J.J. (2016). Excitation and emission properties of Zn(II) Schiff base complex by combined crystallographic, spectroscopic and DFT studies. J. Photochem. Photobiol. 314, 96–103. DOI: 10.1016/j.jphotochem.2015.08.007. DOI öffnenSearch in Google Scholar

Hadjoudis, E. & Mavridis, I.M. (2014). Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem. Soc. Rev. 33, 579–588. DOI: 10.1039/B303644H DOI öffnenSearch in Google Scholar

Yu, W., Jia, J., Gao, J., Han, L. & Li, Y. (2016). The preparation of a new type of ferrocene-based compounds with large conjugated system containing symmetrical aromatic vinyl with Schiff base moieties and the study of their third-order nonlinear optical properties. Chem. Phys. Lett. 661, 251–256. DOI: 10.1016/j.cplett.2016.04.096. DOI öffnenSearch in Google Scholar

Biswas, R., Ida, Y., Baker, M.L., Biswas, S., Kar, P., Nojiri, H., Ishida, T. & Ghosh, A (2013). A New Family of Trinuclear Nickel(II) Complexes as Single-Molecule Magnets. Chem. Eur. J. 19, 3943–3953. DOI: 10.1002/chem.201202795.23362190 DOI öffnenSearch in Google Scholar

Lee, J., Lee, H., Nayab, S. & Yoon, K.B. (2019). Synthesis, characterization and polymerisation studies of cadmium(II) complexes containing N,N′,X-tridentate X-substituted (X = N, O) 2-iminomethylpyridines. Polyhedron. 158, 432–440. DOI: 10.1016/j.poly.2018.11.033. DOI öffnenSearch in Google Scholar

Azam, M., Wabaidur, S.M., Alam, M.J., Trzesowska-Kruszynska, A., Kruszynski, R., Alam, M., Al-Resayes, S.I., Dwivedi, S., Khan, M.R., Islam, M.S. & Albaqami, N.T.M. (2019). Synthesis, structural investigations and pharmacological properties of a new zinc complex with a N4-donor Schiff base incorporating 2-pyridyl ring. Inorg. Chim. Acta. 487, 97-106. DOI: 10.1016/j.ica.2018.12.009. DOI öffnenSearch in Google Scholar

Satterfield, M. & Brodbelt, J.S. (2001). Relative Binding Energies of Gas-Phase Pyridyl Ligand/Metal Complexes by Energy-Variable Collisionally Activated Dissociation in a Quadrupole Ion Trap. Inorg. Chem. 40, 5393–5400. DOI: 10.1021/ic010356r.11578185 DOI öffnenSearch in Google Scholar

Azam, M., Al-Resayes, S.I., Wabaidur, S.M., Trzesowska-Kruszynska, A., Kruszynski, R., Mohapatra, R.K. & Siddiqui, M.R.H. (2018). Cd(II) complex constructed from dipyridyl imine ligand: Design, synthesis and exploration of its photocatalytic degradation properties. Inorg. Chim. Acta. 471, 698–704. DOI: 10.1016/j.ica.2017.12.005. DOI öffnenSearch in Google Scholar

(a) Scales, S.J., Zhang, H., Chapman, P.A., McRory, C.P., Derrah, E.J., Vogels, C.M., Saleh, M.T., Decken, A. & Westcott, S.A. (2004). Synthesis, characterization, and cytotoxicities of palladium(II) and platinum(II) complexes containing fluorinated pyridinecarboxaldimines. Polyhedron. 23, 2169–2176. DOI: 10.1016/j.poly.2004.06.013; (b) McDonnell, U., Kerchoffs, J.M.C.A., Castineiras, R.P.M., Hicks, M.R., Hotze, A.C.G., Hannon, M.J. & Rodger, A. (2008). Synthesis and cytotoxicity of dinuclear complexes containing ruthenium(II) bipyridyl units linked by a bis(pyridylimine) ligand. Dalton. Trans. 667–675. DOI: 10.1039/B711080D. DOI öffnenSearch in Google Scholar

Samanta, B., Chakraborty, J., Choudhury, C.R., Dey, S.K., Dey, D.K., Batten, S.R., Jensen, P., Yap, G.P.A. & Mitra, S. (2007). Synthesis, characterisation and structural aspects of a new diorganotin(IV) complex with N′-(5-bromo-2-hydroxybenzylidene)benzoylhydrazone ligand. Struct. Chem. 18, 287–293. DOI: 10.1007/s11224-006-9133-y. DOI öffnenSearch in Google Scholar

(a) Kettunen, M, Vedder, C., Brintzinger, H.-H., Mutikainen, I., Leskel€a, M. & Repo, T. (2005). Alternative Coordination Modes in Palladium(II)-Diimino-Bispyridine Complexes with an Axially Chiral Biphenyl Backbone. Eur. J. Inorg. Chem. 1081–1089. DOI: 10.1002/ejic.200400913; (b) Sibanyoni, J.M., Bagihalli, G.B. & Mapolie, S.F. (2012). Binuclear Pd-methyl complexes of N,N′-{1, n}-alkanediyl-bis(pyridinyl-2-methani-mine) ligands (n = 5, 8, 9, 10 and 12): Evaluation as catalysts precursors for phenylacetylene polymerization. J. Organomet. Chem. 700, 93–102. DOI: 10.1016/j.jorganchem.2011.11.019; (c) Chen, R., Bacsa, J. & Mapolie, S.F. (2003). {N-alkyl-N-[pyridin-2-ylmethylene] amine}dichloro palladium(II) complexes: synthesis, crystal structures and evaluation of their catalytic activities for ethylene polymerization. Polyhedron. 22, 2855–2861. DOI: 10.1016/S0277-5387(03)00410-8. DOI öffnenSearch in Google Scholar

Kumar, V., Manar, K.K., Gupta, A.N., Singh, V., Drew, M.G.B. & Singh, N. (2016). Impact of ferrocenyl and pyridyl groups attached to dithiocarbamate moieties on crystal structures and luminescent characteristics of group 12 metal complexes. J. Organomet. Chem. 820, 62–69. DOI: 10.1016/j.jorganchem.2016.08.007. DOI öffnenSearch in Google Scholar

Pracharova, J., Vigueras, G., Novohradsky, V., Cutillas, N., Janiak, C., Kostrhunova, H., Kasparkova, J., Ruiz, J. & Brabec, V. (2018). Exploring the Effect of Polypyridyl Ligands on the Anticancer Activity of Phosphorescent Iridium(III) Complexes: From Proteosynthesis Inhibitors to Photodynamic Therapy Agents. Chem. Eur. J. 24, 4607–4619. DOI: 10.1002/chem.201705362.29369444 DOI öffnenSearch in Google Scholar

Al-Resayes, S.I., Azam, M., Trzesowska-Kruszynska, A., Kruszynski, R., Soliman, S.M., Mohapatra, R.K. & Khan, Z. (2020). Structural and Theoretical Investigations, Hirshfeld Surface Analyses, and Cytotoxicity of a Naphthalene-Based Chiral Compound. ACS. Omega. 5, 27227–27234. DOI: 10.1021/acsomega.0c03376.759413333134684 DOI öffnenSearch in Google Scholar

Li, J.J., Guo, L., Tian, Z., Tian, M., Zhang, S., Xu, K., Qian, Y. & Liu, Z. (2017). Novel half-sandwich iridium(iii) imino-pyridyl complexes showing remarkable in vitro anticancer activity. Dalton. Trans. 46, 15520–15534. DOI: 10.1039/C7DT03265J. DOI öffnenSearch in Google Scholar

Stepanenko, I.N., Casini, A., Edafe, F., Novak, M.S., Arion, V.B., Dyson, P.J., Jakupec, M.A. & Kepple, B.K. (2011). Conjugation of Organoruthenium(II) 3-(1H-Benzimidazol-2-yl) pyrazolo[3,4-b]pyridines and Indolo[3,2-d]benzazepines to Recombinant Human Serum Albumin: a Strategy To Enhance Cytotoxicity in Cancer Cells. Inorg. Chem. 50, 12669–12679. DOI: 10.1021/ic201801e.325547222111668 DOI öffnenSearch in Google Scholar

Sava, G., Bergamoa, A. & Dyson, P.J. (2011). Metal-based antitumour drugs in the post-genomic era: what comes next. Dalton. Trans. 40, 9069–9075. DOI: 10.1039/C1DT10522A. DOI öffnenSearch in Google Scholar

Mallela, R., Konakanchi, R., Guda, R., Munirathinam, N., Gandamalla, D., Yellu, N.R. & Kotha, L.R. (2018). Zn(II), Cd(II) and Hg(II) metal complexes of 2-aminonicotinaldehyde: Synthesis, crystal structure, biological evaluation and molecular docking study. Inorg. Chim. Acta, 469, 66–75. DOI: 10.1016/j.ica.2017.08.042. DOI öffnenSearch in Google Scholar

Kritsanawong, S., Innajak, S., Imoto, M. & Watanapokasin, R. (2016). Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. Int. J. Oncology 48, 2155–2165. DOI: 10.3892/ijo.2016.3399.26892433 DOI öffnenSearch in Google Scholar

Huang, Y.C., Haribabu, J., Chien, C.M., Sabapathi, G., Chou, C.K., Karvembu, R., Venuvanalingam, P., Ching, W.M., Tsai, M.L. & Hsu, S.C.N. (2019). Half-sandwich Ru(η6-p-cymene) complexes featuring pyrazole appended ligands: Synthesis, DNA binding and in vitro cytotoxicity. J. Inorg. Biochem. 194, 74–84. DOI: 10.1016/j.jinorgbio.2019.02.012.30831392 DOI öffnenSearch in Google Scholar

Azam, M,. Wabaidur, S.M., Alam, M., Khan, Z., Alanazi, I.O., Al-Resayes, S.I., Moon, I.S. & Rajendra. (2021). Synthesis, characterization, cytotoxicity, and molecular docking studies of ampyrone-based transition metal complexes. Trans. Met. Chem. 46, 65–71. DOI: 10.1007/s11243-020-00422-8. DOI öffnenSearch in Google Scholar

Shakir, M., Azam, M., Azim, Y., Parveen, S. & A.U. Khan, A.U. (2007). Synthesis and physico-chemical studies on complexes of 1,2-diaminophenyl-N,N′-bis-(2-pyridinecarboxaldimine), (L): A spectroscopic approach on binding studies of DNA with the copper complex. Polyhedron. 26, 5513–5518. DOI: 10.1016/j.poly.2007.08.032. DOI öffnenSearch in Google Scholar

Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds. Fourth ed. New York, Wiley Interscience. (1986). Search in Google Scholar

Bréfuel, N., Vang, I., Shova, S., Dahan, F., Costes, J.-P. & Tuchagueş J.-P. (2007). FeII Spin crossover materials based on dissymmetrical N4 Schiff bases including 2-pyridyl and 2R-imidazol-4-yl rings: Synthesis, crystal structure and magnetic and Mössbauer properties. Polyhedron 26, 1745–1757. DOI: 10.1016/j.poly.2006.12.017. DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo