Uneingeschränkter Zugang

Reinvestigations of the Li2O–Al2O3 system. Part I: LiAlO2 and Li3AlO3


Zitieren

1. Rebouças, L.B., Souza, M.T., Raupp-Pereira1, F., & Novaes de Oliveira, A.P. (2019). Characterization of Li2O-Al2O3-SiO2 glass-ceramics produced from a Brazilian spodumene concentrate. Cerâmica 65, 366–377. DOI: 10.1590/0366-69132019653752699.10.1590/0366-69132019653752699 Search in Google Scholar

2. Ahmadi, Moghadam, H. & Hossein, Paydar, M. (2016). The Effect of Nano CuO as Sintering Aid on Phase Formation, Microstructure and Properties of Li2O-Stabilized β″-Alumina Ceramics. J. Ceram. Sci. Tech., 07(04), 441–446. DOI: 10.4416/JCST2016-00075. Search in Google Scholar

3. Shackelford, J.F. & Doremus, R.H. (2008). Ceramic and glass materials. Structure, properties and processing. Springer Science+Business Media LLC New York. ISBN 978-0-387-73361-6.10.1007/978-0-387-73362-3 Search in Google Scholar

4. Dhabekar, B., Raja, E.A., Gundu Rao, T.K., Kher, R.K. & Bhat, B.C. (2009). Thermoluminescence, optically stimulated luminescence and ESR studies on LiAl5O8:Tb. Indian. J. Pure Ap. Phy., 47, 426–428. Search in Google Scholar

5. Mandowska, E., Mandowski, A., Bilski, P., Marczewska, B., Twardak, A. & Gieszczyk, W. (2015). Lithium aluminate – a new detector for dosimetry. Prz. Elektrotech. 91(9), 117–120 (in Polish). Search in Google Scholar

6. Gao, J., Shi, S., Xiao, R. & Li, H. (2016). Synthesis and ionic transport mechanisms of α-LiAlO2, Solid State Ionics, 286, 122–134. DOI: 10.1016/j.ssi.2015.12.028.10.1016/j.ssi.2015.12.028 Search in Google Scholar

7. Özkan, G. & Incirkuş Ergençoglu, V. (2016). Synthesis and characterization of solid electrolyte structure material (LiAlO2) using different kinds of lithium and aluminum compounds for molten carbonate fuel cells. Indian J. Chem. Technol. 23, 227–231. Search in Google Scholar

8. Kim, J.E., Patil, K.Y., Han, J., Yoon, S.P., Nam, S.W., Lim, T.H., Hong, S.A., Kim, H. & Lim, H.Ch. (2009). Using aluminum and Li2CO3 particles to reinforce the α-LiAlO2 matrix for molten carbonate fuel cells. Internat. J. Hydrogen Energy 34(22), 9227–9232. DOI: 10.1016/j.ijhydene.2009.08.069.10.1016/j.ijhydene.2009.08.069 Search in Google Scholar

9. Ducan, Y. (2021). Theoretical Investigation of the CO2 Capture Properties of γ-LiAlO2 and α-Li5AlO4. Micro Nanosyst. 13, 32–41. DOI: 10.2174/1876402911666190913184300.10.2174/1876402911666190913184300 Search in Google Scholar

10. Ávalos-Rendón, T., Casa-Madrid, J. & Pfeiffer, H. (2009). Thermochemical Capture of Carbon Dioxide on Lithium Aluminates (LiAlO2 and Li5AlO4): A New Option for the CO2 Absorption. J. Phys. Chem. A, 113, 6919–6923. DOI: 10.1021/jp902501v.10.1021/jp902501v19489587 Search in Google Scholar

11. Raja, M., Sanjeev, G., Kumar, T.P. & Stephan, A.M. (2015). Lithium aluminate-based ceramic membranes as separators for lithium-ion batteries. Ceram. Int. 41, 3045–50. DOI: 10.1016/j.ceramint.2014.10.142.10.1016/j.ceramint.2014.10.142 Search in Google Scholar

12. Fouad, O.A., Farghaly, F.I. & Bahgat, M. (2007). A novel approach for synthesis of nanocrystalline γ-LiAlO2 from spent lithium-ion batteries. J. Anal. Appl. Pyrolysis. 78, 65–69. DOI: 10.1016/j.jaap.2006.04.002.10.1016/j.jaap.2006.04.002 Search in Google Scholar

13. Pollard, V.A., Young, A., McLellan, R., Kennedy, A.R., Tuttle, T., Robert, E. & Mulvey, R.E. (2019). Lithium-Aluminate-Catalyzed Hydrophosphination Applications. Angew. Chem. Int. Ed. 58, 1229–12296. DOI: 10.1002/anie.201906807.10.1002/anie.201906807677157331260154 Search in Google Scholar

14. Indris, S. & Heitjans, P. (2006). Local electronic structure in a LiAlO2 single crystal studied with 7Li NMR spectroscopy and comparison with quantum chemical calculations. Phys. Rev. B 74, 245120-1-5. DOI: 10.1103/PhysRevB.74.245120.10.1103/PhysRevB.74.245120 Search in Google Scholar

15. Duan, Y., Sorescu, D.C., Jiang, W. & Senor, D.J. (2020) Theoretical study of the electronic, thermodynamic, and thermo-conductive properties of γ-LiAlO2 with 6Li isotope substitutions fortritium production. J. Nucl. Mater. 530, 151963. DOI: 10.1016/j.nucmat.2019.151963. Search in Google Scholar

16. Rasneur, B. (1985). Tritium breeding material γ-LiAlO2. Fusion Technol. 8, 1909–1914. DOI: 10.13182/FST85-A40040.10.13182/FST85-A40040 Search in Google Scholar

17. Liu, Y.Y., Billone, M.C., Fischer, A.K., Tam, S.W., Clemmer, R.G. & Hollenberg, G.W. (1985). Solid tritium breeder materials Li2O and LiAlO2 - a data-base review. Fusion Sci. Technol. 8, 1970–1984. DOI: 10.13182/FST85-A24573.10.13182/FST85-A24573 Search in Google Scholar

18. Morley, N.B., Abdou, M.A., Anderson, M., Calderoni, P., Kurtz, R.J., Nygren, R., Raffray, R., Sawan, M., Sharpe, P., Smolentsev, S., Willms, S. & Ying, A.Y. (2006). Overview of fusion nuclear technology in the US. Fusion Eng. Des. 81, 33–43. DOI: 10.1016/j.fusengdes.2005.06.359.10.1016/j.fusengdes.2005.06.359 Search in Google Scholar

19. Strickler, D.W. & Roy, R. (1961). Studies in the System Li2O–Al2O3–Fe2O3–H2O. J. Am. Ceram. Soc. 44, 5, 225–230. DOI: 10.1111/j.1151-2916.1961.tb15365.x.10.1111/j.1151-2916.1961.tb15365.x Search in Google Scholar

20. Lejus, A.M. & R. Collongues, R. (1962). Sur la structure les propriétés des aluminates de lithium. Chimie Minérale 2005–2007. Search in Google Scholar

21. Kriens, M., Adiwidjaja, G., Guse, W., Klaska, K.H., Lathe, C. & Saalfeld, H. (1996). The crystal structures of LiAl5O8 and Li2Al4O7. N. Jb. Miner. Mh. 8, 344–350. Search in Google Scholar

22. Hatch, R.A. (1943). Phase equilibrium in the system: Li2O–Al2O3–SiO2. Am. Mineral. 28, 471–496. DOI: 10.1111/j.1151-2916.1985.tb15280.x.10.1111/j.1151-2916.1985.tb15280.x Search in Google Scholar

23. Cook, L.P. & Plante, E.R. (1992). Phase Diagram of the System Li2O–Al2O3. Ceram. Trans. 27, 193–222. Search in Google Scholar

24. Byker, H.J., Eliezer, I., Eliezer, N. & Howald, R.A. (1979). Calculation of a Phase Diagram for LiO0.5–AlO1.5 System. J. Phys. Chem. 83, 18, 2349–2355. DOI: 10.1021/j100481a009.10.1021/j100481a009 Search in Google Scholar

25. Konar, B., Van Ende, M.A. & Junh, I.H. (2018). Critical Evaluation and Thermodynamic Optimization of the Li2O-Al2O3 and Li2O–MgO–Al2O3 Systems. Metall. Mat. Trans. B 49, 2917–2944. DOI: 10.1007/s11663-018-1349-x.10.1007/s11663-018-1349-x Search in Google Scholar

26. Marezio, M. & Remeika, J.P. (1966). High-pressure synthesis and crystal srtucture of α-LiAlO2. J. Chem. Phys. 44, 3143-4. DOI: 10.1063/1.1727203.10.1063/1.1727203 Search in Google Scholar

27. Lehmann, H.A. & Hesselbrarth, H.Z. (1961). Uber eine neue Modifikation des LiAlO2. Anorg. Allg. Chem. 313, 117–120. DOI: 10.1002/zaac.19613130110.10.1002/zaac.19613130110 Search in Google Scholar

28. Dronskowski, R. (1993). Reactivity and acidity of Li in LiAlO2 phases. Inorg. Chem. 32, 1–9. DOI: 10.1021/ic00053a001.10.1021/ic00053a001 Search in Google Scholar

29. Poepplmeler, K.R., Chiang, C.K. & Kipp, D.O. (1988). Synthesis of High-Surface-Area α-LiAlO2. Inorg. Chem. 27, 4523–4524. DOI: 10.1021/ic00298a002.10.1021/ic00298a002 Search in Google Scholar

30. Thery, J. (1961). Structure and properties of alkaline aluminates. Bull. Soc. Chim. Fr. 973–5. Search in Google Scholar

31. Marezio, M. (1965). The Crystal Structure of LiGaO2. Acta Cryst. 18, 481–484. DOI: 10.1107/S0365110X65001068.10.1107/S0365110X65001068 Search in Google Scholar

32. Marezio, M. (1965). The Crystal Structure and Anomalous Dispersion of γ-LiAlO2. Acta Cryst. 19, 396–400. DOI: 10.1107/S0365110X65003511.10.1107/S0365110X65003511 Search in Google Scholar

33. Li, X., Kobayashi, T., Zhang, F., Kimoto, K. & Sekine, T. (2004). A new high-pressure phase of LiAlO2. J. Solid State Chem. 177, 1939–1943. DOI: 10.1016/j.jssc.2003.12.014.10.1016/j.jssc.2003.12.014 Search in Google Scholar

34. Lei, L., He, D., Zou, Y. & Zhang, W. (2008). Phase transitions of LiAlO2 at high pressure and high temperature. J. Solid State Chem. 181, 1810–1815. DOI: 10.1016/j.jssc.2008.04.006.10.1016/j.jssc.2008.04.006 Search in Google Scholar

35. Chang, C.H. & Margrave, J.L. (1968). Highpressure-high temperature synthesis. III. Direct synthesis of new high-pressure forms of LiAlO2 and LiGaO2 and polymorphism in LiMO2 compounds (M=B, Al, Ga). J. Amer. Chem. Soc. 90, 2020–2022. DOI: 10.1021/ja01010a018.10.1021/ja01010a018 Search in Google Scholar

36. Debray, L. & Hardy, A.C.R. (1960). Contribution a Vetude structurale des aluminates de lithium. Hebd. Seances Acad. Sci. 251, 725–726. Search in Google Scholar

37. Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M.,M. Reiche, M. & Ploog, K.H. (2000). Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868. DOI: 10.1038/35022529.10.1038/3502252910972282 Search in Google Scholar

38. Wiedemann, D., Indris, S., Meyen, M. & Pedersen, B. (2016) Single-crystal neutron diffraction on γ-LiAlO2: Structure determination and estimation of lithium diffusion pathway. Zeitschrift für Kristallographie – Crystalline Materials. 231(3), 189–193. DOI: 10.14279/depositonce-5480. Search in Google Scholar

39. Ha, N.T.T., Van Giap, T. & Thanh, N.T. (2020). Synthesis of lithium aluminate for application in radiation dosimetry. Mater. Lett. 267, 127506. DOI: 10.1016/j.matlet.2020.127506.10.1016/j.matlet.2020.127506 Search in Google Scholar

40. Jimenez-Becerril, J. & Garcia-Sosa, I. (2011). Synthesis of lithium aluminate by thermal decomposition of a lithium dawsonite-type precursor. J. Ceram. Process. Res. 12, 52–56. Search in Google Scholar

41. Heo, S.J., Batra, R., Ramprasad, R. & Singh, P. (2018). Crystal morphology and phase transformation of LiAlO2: combined experimental and first-principles Studies. J. Phys. Chem. C 222, 28797–28804. DOI: 10.1021/acs.jpcc.8b09716.10.1021/acs.jpcc.8b09716 Search in Google Scholar

42. Patil, K.Y., Yoon, S.P., Han, J., Lim, T.H., Nam, S.W. & Oh, I.H. (2011). The effect of lithium addition on aluminum-reinforced α-LiAlO2 matrices for molten carbonate fuel cells. Int. J. Hydrog. Energy, 36, 6237–6247. DOI: 10.1016/j.ijhydene.2011.01.161.10.1016/j.ijhydene.2011.01.161 Search in Google Scholar

43. Park, J.S., Meng, X., Elam, J.W., Hao, S., Wolverton, Ch., Kim, Ch. & Cabana, J. (2014). Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries. Chem. Mater. 26, 3128–3134. DOI: 10.1021/cm500512n.10.1021/cm500512n Search in Google Scholar

44. Cheng, F., Xin, Y., Huang, Y., Chen, J., Zhou, H. & Zhang, X. (2013). Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2. J. Power Sources. 239, 181–188. DOI: 10.1016/j.jpowsour.2013.03.143.10.1016/j.jpowsour.2013.03.143 Search in Google Scholar

45. Cao, H., Xia, B., Zhang, Y., Xu, N. (2005). LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics. 176, 911–914. DOI: 10.1016/j.ssi.2004.12.001.10.1016/j.ssi.2004.12.001 Search in Google Scholar

46. Danek, V., Tarniowy, M. & Suski, L. (2004) Kinetics of the α → γ phase transformation in LiAlO2 under various atmospheres within the 1073–1173 K temperatures range. J. Mater. Sci. 39, 2429–2435. DOI: 10.1023/B:JMSC.0000020006.46296.04.10.1023/B:JMSC.0000020006.46296.04 Search in Google Scholar

47. Lejus, A.M. (1964). Sur la formation a haute temperature de spinelles non stechiométriques et de phases derivées dans plusieurs systémes d’oxydes a base d’alumina et dans le systéme alumina-nitrure d’aluminum. Rev. Hautes Tempér. et Réfract., 1, 53–95. Search in Google Scholar

48. Hummel, F.A., Sastry, B.S.R. & Wotring, D. (1958). Studies in Lithium Oxide Systems: II, Li2O·Al2O3–Al2O3. J. Am. Ceram. Soc. 41, 3, 88–92. DOI: 10.1111/j.1151-916.1958.tb15448.x. Search in Google Scholar

49. Isupov, V.P., Bulina, N.V. & Borodulina, I.A. (2017). Effect of Water Vapor Pressure on the Phase Composition of Lithium Monoaluminates Formed in the Interaction of Aluminum Hydroxide and Lithium Carbonate. Zhurnal Prikladnoi Khimii, 90, 986−991. DOI: 10.1134/S1070427217080043.10.1134/S1070427217080043 Search in Google Scholar

50. Tarte, P. (1967). Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim. Acta 23A, 2127–2143. DOI: 10.1016/0584-8539(67)80100-4.10.1016/0584-8539(67)80100-4 Search in Google Scholar

51. Braun, P.A. (1952). Superstructure in Spinels. Nature 170, 1123. DOI: 10.1038/1701123a0.10.1038/1701123a0 Search in Google Scholar

52. Datta, R.K. & Roy, R. (1963). Phase Transitions in LiAl5O8. J. Am. Ceram. Soc. 46, 8, 388–390. DOI: 10.1111/j.1151-2916.1963.tb11757.x.10.1111/j.1151-2916.1963.tb11757.x Search in Google Scholar

53. La Ginestra, A., Lo Jacono, M. & Porta, P. (1972). The preparation, characterization, and thermal behaviour of some lithium aluminum oxides: Li3AlO3 and Li5AlO4. J. Thermal Anal. 4, 5–17. DOI: 10.1007/bf02100945.10.1007/BF02100945 Search in Google Scholar

54. Kroger, C. & Fingas, E. (1935). Über die Systeme Alkalioxyd–CaO–Al2O3–SiO2–CO2. IV. Die CO2-Drucke des kieselsäurereicheren Teils des Systems Li2O–SiO2–CO2 und der Einwirkung von Al2O3 auf Li2CO3. Z anorg. Allg. Chem. 224, 289–304. DOI: 10.1002/zaac.19352240309.10.1002/zaac.19352240309 Search in Google Scholar

55. Fedorov, T.F. & Shamari, F.I. (1960). Prim. Vak. V. Met., Akad. Nauk SSSR, Inst. Met. A.A. Baikova, 137–142. Search in Google Scholar

56. Walczak, J., Kurzawa, M. & Tabero, P. (1987). V9Mo6O40 and phase equilibria in the system V9Mo6O40–Fe2O3. Thermochim. Acta 118, 1–7. DOI: 10.1016/0040-6031(87)80065-5.10.1016/0040-6031(87)80065-5 Search in Google Scholar

57. Tabero, P. (2010). Formation and properties of the new Al8V10W16O85 and Fe8-xAlxV10W16O85 phases with the M-Nb2O5 structure. J. Therm. Anal. Calorim. 101, 560–566. DOI: 10.1007/s10973-010-0848-z.10.1007/s10973-010-0848-z Search in Google Scholar

58. Tabero, P., Frackowiak, A., Filipek, E., Dąbrowska, G., Homonnay, Z. & Szilágyi, P.Á. (2018). Synthesis, thermal stability and unknown properties of Fe1-xAlxVO4 solid solution. Ceram. Int. 44, 17759–17766. DOI: 10.1016/j.ceramint.2018.06.243.10.1016/j.ceramint.2018.06.243 Search in Google Scholar

59. Filipek, E., Dabrowska, G. & Piz, M. (2010). Synthesis and characterization of new compound in the V-Fe-Sb-O system. J. Alloys Compd. 490, 93–97. DOI: 10.1016/j.jallcom.2009.10.123.10.1016/j.jallcom.2009.10.123 Search in Google Scholar

60. Levin, I. & Brandon, D. (1998). Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. J. Am. Ceram. Soc. 81, 1995–2012. DOI: 10.1111/j.1151-2916.1998.tb02581.x.10.1111/j.1151-2916.1998.tb02581.x Search in Google Scholar

61. Krokodis, X., Raybaud, P., Gobichon, A.E., Rebours, B., Euzen, P. & Toulhoat, H. (2001). Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina. J. Phys. Chem. B 105, 5121–5130. DOI: 10.1021/jp0038310.10.1021/jp0038310 Search in Google Scholar

62. Kim, J., Kang, H., Hwang, K. & Yoon, S. (2019). Thermal Decomposition Study on Li2O2 for Li2NiO2 Synthesis as a Sacrificing Positive Additive of Lithium-Ion Batteries. Molecules 24, 4624–4632. DOI: 10.3390/molecules24244624.10.3390/molecules24244624694373031861185 Search in Google Scholar

63. Tovar, T.M. & Le, Van, M.D. (2017). Supported lithium hydroxide for carbon dioxide adsorption in water-saturated environments. Adsorption 23, 51–56. DOI: 10.1007/s10450-016-9817-6.10.1007/s10450-016-9817-6 Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik