1. bookVolumen 22 (2020): Heft 4 (December 2020)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-4741
Erstveröffentlichung
03 Jul 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Construction of a reduced mechanism for diesel-natural gas -hydrogen using HCCI model with Direct Relation Graph and Sensitivity Analysis

Online veröffentlicht: 26 Nov 2020
Volumen & Heft: Volumen 22 (2020) - Heft 4 (December 2020)
Seitenbereich: 55 - 60
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-4741
Erstveröffentlichung
03 Jul 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Based on the theory of direct relation graph (DRG) and sensitivity analysis (SA), a reduced mechanism for diesel-CH4-H2 tri-fuel is constructed. The detailed mechanism of Lawrence Livermore National Laboratory, which has 654 elements and 2827 elementary reactions, is used for mechanism reduction with DRG. Some small thresholds are used in the process of simplifying the detailed mechanism via DRG, and a skeletal mechanism of 266 elements is obtained. Based on the framework of the skeletal mechanism, the time-consuming approach of sensitivity analysis is used for further simplification, and the skeletal mechanism is reduced to 262 elements. Validation of the reduced mechanism is done via a comparison of ignition delay time and laminar flame speed from the calculation using the reduced mechanism and the detailed mechanism or experiment. The reduced mechanism shows good agreement with the detailed mechanism and with related experimental data.

1. Shudo, T. & Takahashi, T. (2004). Influence of Reformed Gas Composition on HCCI Combustion Engine System fueled with DME and H2-CO-CO2 which are Onboard-reformed from Methanol Utilizing Engine Exhaust Heat. JSME Internat. J. 70(698), 2663–2669. DOI: 10.1299/kikaib.70.2663.DOI öffnenSearch in Google Scholar

2. Shudo, T. (2006). An HCCI combustion engine system using on-board reformed gases of methanol with waste heat recovery: ignition control by hydrogen. Int. J. Vehicle Des. 41(1–4), 206–226. DOI: 10.1504/IJVD.2006.009669.DOI öffnenSearch in Google Scholar

3. Li, H.L. & Karim, G.A. (2005). Exhaust emissions from an SI engine operating on gaseous fuel mixtures containing hydrogen. Int. J. Hydrogen. Energ. 30(13–14), 1491–1499. DOI: 10.1016/j.ijhydene.2005.05.007.DOI öffnenSearch in Google Scholar

4. Tutak, W., Jamrozik, A. & Grab-Rogalinski, K. (2020). Effect of natural gas enrichment with hydrogen on combustion process and emission characteristic of a dual fuel diesel engine. Int. J. Hydrogen. Energ. 1(119), 901–910. DOI: 10.1016/j.ijhydene.2020.01.080.DOI öffnenSearch in Google Scholar

5. D’Andrea, T., Henshaw, P., Ting, D.S.K. (2004). The addition of hydrogen to a gasoline-fuelled SI engine. Int. J. Hydrogen Energ. 29(14), 1541–1552. DOI: 10.1016/j.ijhydene.2004.02.002.DOI öffnenSearch in Google Scholar

6. Sobiesiak, A., Uykur, C., Ting, S.K. & Henshaw, P.F. (2002). Hydrogen/Oxygen Additives Influence on Premixed Iso-Octane/Air Flame. SAE Technical Papers, 2002. DOI: 10.4271/2002-01-1710.DOI öffnenSearch in Google Scholar

7. Norbeck, J.M., Heffel, J.W., Durbin, T.D., Tabbara, B., Bowden, J.M. & Montano, M.C. (1996). Hydrogen fuel for surface transportation. Society of Automotive Engineers.10.4271/R-160Search in Google Scholar

8. Das, L.M. (1996). Hydrogen-oxygen reaction mechanism and its implication to hydrogen engine combustion. Int. J. Hydrogen. Energ. 21(8), 703–715. DOI: 10.1016/0360-3199(95)00138-7.DOI öffnenSearch in Google Scholar

9. Feng, S.Q. (2017). Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine. Math. Probl. Eng. (21), 1–12. DOI: 10.1155/2017/6825079.DOI öffnenSearch in Google Scholar

10. Lam, S.H. & Goussis, D.A. (1994). The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26(4), 461–486. DOI: 10.1002/kin.550260408.DOI öffnenSearch in Google Scholar

11. Lu, T.F. & Law, C.K., (2008). A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 154(4), 761–774. DOI: 10.1016/j.combustflame.2008.04.025.DOI öffnenSearch in Google Scholar

12. Goussis, D.A. & Skevis, G. (2005). Nitrogen chemistry controlling steps in methane-air premixed flames. 3rd M.I.T. Conference on Computational Fluid and Solid Mechanics. 2005, 650–653.Search in Google Scholar

13. Wu, Z.Z., Qiao, X.Q. & Huang, Z.(2013). A criterion based on computational singular perturbation for the construction of reduced mechanism for dimethyl ether oxidation. J. Serb. Chem. Soc. 78(8), 1177–1188. DOI: 10.2298/JSC121122023W.DOI öffnenSearch in Google Scholar

14. Treviño, C. & Méndez, F. (1991). Asymptotic analysis of the ignition of hydrogen by a hot plate in a boundary layer flow. Combust. Sci. Technol. 78(4–6), 197–216. DOI: 10.1080/00102209108951749.DOI öffnenSearch in Google Scholar

15. Lu, T.F. & Law, C.K. (2006). Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane. Combust. Flame 144(1–2), 24–36. DOI: 10.1016/j.combustflame.2005.02.015.DOI öffnenSearch in Google Scholar

16. Lu, T.F. & Law, C.K. (2005). A directed relation graph method for mechanism reduction. P Combust. Inst. 30(1), 1333–1341. DOI: 10.1016/j.proci.2004.08.145.DOI öffnenSearch in Google Scholar

17. Luo, Z.Y., Lu, T.F. & Liu, J.W. (2011). A reduced mechanism for ethylene/methane mixtures with excessive NO enrichment. Combust. Flame 158(7), 1245–1254. DOI: 10.1016/j.combustflame.2010.12.009.DOI öffnenSearch in Google Scholar

18. Sankaran, R., Hawk, S.E.R., Chen, J.H., Lu, T.F. & Law, C.K. (2007). Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Combust. Inst. 31(1), 1291–1298. DOI: 10.1016/j.proci.2006.08.025.DOI öffnenSearch in Google Scholar

19. Luo, Z.Y., Som, S., Sarathy, S.M., Plomer, M., Pitz, W.J., Longman, D.E. & Lu, T.F. (2014). Development and validation of an n-dodecane skeletal mechanism for spray combustion applications. Combust. Theory Model. 18(2), 187–203. DOI: 10.1080/13647830.2013.872807.DOI öffnenSearch in Google Scholar

20. Luo, Z.Y., Plomer, M., Lu, T.F., Som, S. & Longman, D.E. (2012). A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications. Combust. Theory Model. 99(2), 143–153. DOI: 10.1080/13647830.2011.631034.DOI öffnenSearch in Google Scholar

21. Tosatto, L., Bennett, B.A.V. & Smooke, M.D. (2013). Comparison of different DRG-based methods for the skeletal reduction of JP-8 surrogate mechanisms. Combust. Flame 160(9), 1572–1582. DOI: 10.1016/j.combustflame.2013.03.024.DOI öffnenSearch in Google Scholar

22. Lu, T.F. & Law, C.K. (2006). On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146(3), 472–483. DOI: 10.1016/j.combustflame.2006.04.017.DOI öffnenSearch in Google Scholar

23. Ciezki, H.K. & Adomeit, G. (1993). Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions. Combust. Flame 93(4), 421–433. DOI: 10.1016/0010-2180(93)90142-P.DOI öffnenSearch in Google Scholar

24. Kumar, K., Freeh, J.E., Sung, C.J. & Huang, Y. (2007). Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures. J. Propul. Power 23(2), 428–436. DOI: 10.2514/1.24391.DOI öffnenSearch in Google Scholar

25. Kumar, R., Singhal, A., Katoch, A. & Kumar, S. (2020). Experimental Investigations on Laminar Burning Velocities of n-Heptane+ Air Mixtures at Higher Mixture Temperatures Using Externally Heated Diverging Channel Method. Energy Fuels 34(2), 2405–2416. DOI: 10.1021/acs.energyfuels.9b04249.DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo