1. bookVolumen 22 (2020): Heft 4 (December 2020)
03 Jul 2007
4 Hefte pro Jahr
access type Uneingeschränkter Zugang

Reduction and Biosorption of Cr(VI) from Aqueous Solutions by Acid-Modified Guava Seeds: Kinetic and Equilibrium Studies

Online veröffentlicht: 26 Nov 2020
Volumen & Heft: Volumen 22 (2020) - Heft 4 (December 2020)
Seitenbereich: 36 - 47
03 Jul 2007
4 Hefte pro Jahr

The use of guava seeds (GS) and acid-modified guava seeds (MGS) for the removal of Cr(VI) from aqueous solutions was investigated. Batch-type experiments were performed with Cr(VI) aqueous solutions and biosorbents to determine the kinetic and equilibrium sorption parameters. Results indicated that GS and MGS were capable of reducing and remove Cr(VI) from solutions, but the reduction was only observed at some experimental conditions. Infrared analysis showed that several functional groups were involved in the reduction, and biosorption of Cr(VI), particularly alcohol, phenolic, carboxylic, and methoxymethyl structures. The mechanisms of reduction and biosorption depended upon the type of biosorbent, pH, and temperature of the system. The pseudo-second-order kinetic model describes the kinetic sorption data, and the Langmuir-Freundlich (L-F) model describes the isotherm data in most cases. Significantly high total chromium biosorption capacities were obtained. Acid modification of guava seeds improves chromium biosorption performance.

1. Prabhakaran, S.K., Vijayaraghavan, K. & Balasubramanian, R. (2009). Removal of Cr (VI) ions by spent tea and coffee dusts: reduction to Cr (III) and biosorption. Ind. Eng. Chem. Res. 48(4), 2113–2117. DOI: 10.1021/ie801380h.DOI öffnenSearch in Google Scholar

2. Mathialagan, T. & Viraraghavan, T. (2003). Adsorption of cadmium from aqueous solutions by vermiculite. Sep. Sci. Technol., 38(1), 57–76. DOI: 10.1081/SS-120016698.DOI öffnenSearch in Google Scholar

3. Navarro, A.E., Ramos, K.P., Agapito, R. & Cuizano, N.A. (2006). Propiedades ácido-básicas de Lentinus edodes y cinética de biosorción de Cadmio (II). Rev. Lat. Rec Nat., 2(2), 47–54. (In spanish) Retrieved January 20, 2020 from https://www.itson.mx/publicaciones/rlrn/Documents/v2-n2-1-propiedades-%C3%A1cido-b%C3%A1sicas-de-lentinus-edodes.pdf.Search in Google Scholar

4. Dehghani, M.H., Sanaei, D., Ali, I. & Bhatnagar, A. (2016). Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J. Mol. Liq. 215, 671–679. DOI: 10.1016/j.jhazmat.2007.07.033.DOI öffnenSearch in Google Scholar

5. Abdel Hameed, M.S. (2006). Continuous removal and recovery of lead by alginate beads, free and alginate-immobilized Chlorella vulgaris. Afr. J. Biotech. 5(19). DOI: 10.5897/AJB2006.000-5070.DOI öffnenSearch in Google Scholar

6. Mehta, S.K. & Gaur, J.P. (2005). Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotech. 25(3), 113–152. DOI: 10.1080/07388550500248571.DOI öffnenSearch in Google Scholar

7. Crist, R.H., Oberholser, K., McGarrity, J., Crist, D.R., Johnson, J.K. & Brittsan, J.M. (1992). Interaction of metals and protons with algae. 3. Marine algae, with emphasis on lead and aluminum. Env. Sci. Technol. 26(3), 496–502. DOI: 10.1021/es00027a007.DOI öffnenSearch in Google Scholar

8. Fan, X.D., & Zhang, X.K. (2015). Adsorption of heavy metals by adsorbents from food waste residue. J. Residuals Sci. Technol. 12, 155–158. DOI: 10.12783/issn.1544-8053/12/s1/22.DOI öffnenSearch in Google Scholar

9. Bayuo, J., Pelig-Ba, K.B. & Abukari, M.A. (2019). Adsorptive removal of chromium (VI) from aqueous solution unto groundnut shell. Appl. Water Sci. 9(4), 107. DOI: 10.1007/s13201-019-0987-8.DOI öffnenSearch in Google Scholar

10. Mangwandi, C., Kurniawan, T.A. & Albadarin, A.B. (2020). Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CM-OS): Kinetics, isotherms and influence of co-existing ions. Chem. Eng. Res. Des. 156, 251–262. DOI: 10.1016/j.cherd.2020.01.034DOI öffnenSearch in Google Scholar

11. Daneshvar, N., Salari, D. & Aber, S. (2002). Chromium adsorption and Cr (VI) reduction to trivalent chromium in aqueous solutions by soya cake. J. Hazard. Mat. 94(1), 49–61. DOI: 10.1016/S0304-3894(02)00054-7.DOI öffnenSearch in Google Scholar

12. Jawad, A. & Karim, S.K.A. (2020). Cr (VI) ions removal from aqueous solutions using carrot residues as an adsorbent. Science Letters, 13(2), 30–36. DOI: 10.24191/sl.v13i2.7871.DOI öffnenSearch in Google Scholar

13. Das, S.H., Saha, J., Saha, A., Rao, A.K., Chakraborty, B. & Dey, S. (2019). Adsorption study of chromium (VI) by dried biomass of tea leaves. J. Indian Chem. Soc. 96(4), 447–454. Retrieved June 15, 2020 from http://www.indianchemicalsociety.com/portal/uploads/journal/2019_04_6_Extended_1556592447.pdf.Search in Google Scholar

14. Aggarwal, R. & Arora, G. (2020). Assessment of biosorbents for chromium removal from aqueous media. Materials Today: Proceedings. In press. DOI: 10.1016/j.matpr.2020.04.837.DOI öffnenSearch in Google Scholar

15. Olguin, M.T., Lopez-González, H. & Serrano-Gómez, J. (2013). Hexavalent chromium removal from aqueous solutions by Fe-modified peanut husk. Water Air Soil Pollut. 224(9), 1654. DOI: 10.1007/s11270-013-1654-6.DOI öffnenSearch in Google Scholar

16. Parlayici, Ş. & Pehlivan, E. (2015). Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium (VI) from aqueous solutions. Environ. Monit. Assess. 187(12), 763. DOI: 10.1007/s10661-015-4984-6.26581609DOI öffnenSearch in Google Scholar

17. Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., Lee, Y.B. & Naidu, R. (2016). Oak (Quercus robur) acorn peel as a low-cost adsorbent for hexavalent chromium removal from aquatic ecosystems and industrial effluents. Water Air Soil Pollut. 227(2), 62. DOI: 10.1007/s11270-016-2760-z.DOI öffnenSearch in Google Scholar

18. Wassie, A.B., & Srivastava, V.C. (2016). Teff straw characterization and utilization for chromium removal from wastewater: Kinetics, isotherm and thermodynamic modelling. J. Env. Chem. Eng. 4(1), 1117–1125. DOI: 10.1016/j.jece.2016.01.019.DOI öffnenSearch in Google Scholar

19. Ntuli, T.D. & Pakade, V.E. (2020). Hexavalent chromium removal by polyacrylic acid-grafted Macadamia nutshell powder through adsorption–reduction mechanism: adsorption isotherms, kinetics and thermodynamics. Chem. Eng. Commun. 207(3), 279–294. DOI: 10.1080/00986445.2019.1581619.DOI öffnenSearch in Google Scholar

20. Alfaro-Cuevas-Villanueva, R., Hidalgo-Vázquez, A.R., Cortés Penagos, C.D.J., & Cortés-Martínez, R. (2014). Thermodynamic, kinetic, and equilibrium parameters for the removal of lead and cadmium from aqueous solutions with calcium alginate beads. Sci. World J. 2014, DOI: 10.1155/2014/647512.392194724587740DOI öffnenSearch in Google Scholar

21. Pinzón-Bedoya, M.L. & Vera Villamizar, L.E. (2009). Kinetic modeling biosorption of Cr (III) using orange shell. Dyna. 76(160), 95–106. (In spanish) Retrieved february 20, 2020 from http://www.scielo.org.co/scielo.php?pid=S0012-73532009000400009&script=sci_arttext&tlng=en.Search in Google Scholar

22. Netzahuatl-Muñoz, A.R., del Carmen Cristiani-Urbina, M. & Cristiani-Urbina, E. (2015). Chromium biosorption from Cr (VI) aqueous solutions by Cupressus lusitanica bark: kinetics, equilibrium and thermodynamic studies. PLoS One, 10(9). DOI: 10.1371/journal.pone.0137086456417926352933DOI öffnenSearch in Google Scholar

23. Cao, W., Wang, Z., Ao, H. & Yuan, B. (2018). Removal of Cr (VI) by corn stalk based anion exchanger: the extent and rate of Cr (VI) reduction as side reaction. Colloids Surf. A Physicochem. Eng. Asp. 539, 424–432. DOI: 10.1016/j.colsurfa.2017.12.049.DOI öffnenSearch in Google Scholar

24. Park, D., Yun, Y.S. & Park, J.M. (2005). Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere. 60(10), 1356–1364. DOI: 10.1016/j.chemosphere.2005.02.020.16054904DOI öffnenSearch in Google Scholar

25. da Rocha Ferreira, G.L., Vendruscolo, F., & Antoniosi Filho, N.R. (2019). Biosorption of hexavalent chromium by Pleurotus ostreatus. Heliyon, 5(3), e01450. DOI: 10.1016/j.heliyon.2019.e01450.644183230976708DOI öffnenSearch in Google Scholar

26. Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., & Pichette, A. (2012). Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation. Polym. Degrad. Stabil. 97(7), 1197–1214. DOI: 10.1016/j.polymdegradstab.2012.03.022DOI öffnenSearch in Google Scholar

27. Yun, Y.S. (2004). Characterization of functional groups of protonated Sargassum polycystum biomass capable of binding protons and metal ions. J. Microbiol Biotechn. 14(1), 29–34. Retrieved march 20, 2020 from http://www.jmb.or.kr/journal/download.php?Filedir=../submission/Journal/014/&num=1822.Search in Google Scholar

28. Ghani, W.A.W.A.K., Mohd, A., da Silva, G., Bachmann, R.T., Taufiq-Yap, Y.H., Rashid, U., & Ala’a, H. (2013). Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind. Crop. Prod. 44, 18–24. DOI: 10.1016/j.indcrop.2012.10.017.DOI öffnenSearch in Google Scholar

29. Wahab, M.A., Jellali, S. & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour. Technol. 101(14), 5070–5075. DOI: 10.1016/j.biortech.2010.01.121.20163954DOI öffnenSearch in Google Scholar

30. Tandy, S., Healey, J.R., Nason, M.A., Williamson, J.C., Jones, D.L. & Thain, S.C. (2010). FT-IR as an alternative method for measuring chemical properties during composting. Bioresour. Technol. 101(14), 5431–5436. DOI: 10.1016/j.biortech.2010.02.033.20335024DOI öffnenSearch in Google Scholar

31. Vázquez-Guerrero, A., Alfaro-Cuevas-Villanueva, R., Rutiaga-Quiñones, J.G. & Cortés-Martínez, R. (2016). Fluoride removal by aluminum-modified pine sawdust: effect of competitive ions. Ecol. Eng. 94, 365–379. DOI: 10.1016/j.ecoleng.2016.05.070.DOI öffnenSearch in Google Scholar

32. Ayoob, S., Gupta, A.K., Bhakat, P.B., & Bhat, V.T. (2008). Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chem. Eng. J. 140(1–3), 6–14. DOI: 10.1016/j.cej.2007.08.029.DOI öffnenSearch in Google Scholar

33. Marín, Rangel, V.M., Cortés, Martínez, R., Cuevas Villanueva, R.A., Garnica, Romo, M.G. & Martínez, Flores, H.E. (2012). As (V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia swingle) residues. J. Food Sci. 77(1), T10-T14. DOI: 10.1111/j.1750-3841.2011.02466.x22122309DOI öffnenSearch in Google Scholar

34. Hon, D.N. & Shiraishi, N. (2000). Wood Cellulosic Chemistry New York, USA: CRC press.Search in Google Scholar

35. Fiol, N., Escudero, C. & Villaescusa, I. (2008). Chromium sorption and Cr (VI) reduction to Cr (III) by grape stalks and yohimbe bark. Bioresour. Technol. 99(11), 5030–5036. DOI: 10.1016/j.biortech.2007.09.007.17945493DOI öffnenSearch in Google Scholar

36. Peng, H., Salmén, L., Stevanic, J. S., & Lu, J. (2019). Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy. Planta. 250(1), 163–171. DOI: 10.1007/s00425-019-03158-730953149DOI öffnenSearch in Google Scholar

37. Coates, J. (2000). Chapter in Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), New Jersey, USA: John Wiley & Sons.Search in Google Scholar

38. Suksabye, P., Thiravetyan, P., Nakbanpote, W. & Chayabutra, S. (2007). Chromium removal from electroplating wastewater by coir pith. J. Hazard. Mat. 141(3), 637–644. DOI: 10.1016/j.jhazmat.2006.07.018.16919872DOI öffnenSearch in Google Scholar

39. Sánchez-Sánchez, H.A., Cortés-Martínez, R. & Alfaro-Cuevas-Villanueva, R. (2013). Fluoride removal from aqueous solutions by mechanically modified guava seeds. Int. J. Sci.: Basic Appl. Res. 11, 159–172. Retrieved june 20, 2020 from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/1326/1204.Search in Google Scholar

40. Puigdomenech, Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA) (version 18), Inorganic Chemistry Department, Royal Institute of Technology, Stockholm, Sweden 2010. Retrieved December 19, 2019 from https://www.kth.se/che/medusa/downloads-1.386254.Search in Google Scholar

41. Bellú, S., Sala, L., González, J., García, S., Frascaroli, M., Blanes, P., García, J., Sales-Peregrin, J., Atria, A., Ferrion, J., Harada, M., Cong, C. & Niwa, Y. (2010). Thermodynamic and dynamic of chromium biosorption by pectic and lignocellulocic biowastes. J. Wat Res. Prot. 2(10), 888. DOI: 10.4236/jwarp.2010.210106.DOI öffnenSearch in Google Scholar

42. Park, D., Yun, Y. S. & Park, J. M. (2005). Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere. 60(10), 1356–1364. DOI: 10.1016/j.chemosphere.2005.02.02016054904DOI öffnenSearch in Google Scholar

43. Park, D., Yun, Y.S. & Park, J.M. (2010). The past, present, and future trends of biosorption. Biotechnol. Bioproc. E. 15(1), 86–102. DOI: 10.1007/s12257-009-0199-4.DOI öffnenSearch in Google Scholar

44. Miretzky, P. & Cirelli, A.F. (2010). Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J. Hazard. Mat. 180(1–3), 1–19. DOI: 10.1016/j.jhazmat.2010.04.060.20451320DOI öffnenSearch in Google Scholar

45. Zheng, Y.M., Liu, T., Jiang, J., Yang, L., Fan, Y., Wee, A.T. & Chen, J.P. (2011). Characterization of hexavalent chromium interaction with Sargassum by X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and quantum chemistry calculation. J. Colloid Interf. Sci. 356(2), 74–748. DOI: 10.1016/j.jcis.2010.12.070.21310422DOI öffnenSearch in Google Scholar

46. Lagrergen, S. (1898). Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39. DOI: 10.1007/BF01501332DOI öffnenSearch in Google Scholar

47. Ho, Y.S., McKay, G., Wase, D.A.J. & Forster, C.F. (2000). Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18(7), 639–650. DOI: 10.1260/0263617001493693DOI öffnenSearch in Google Scholar

48. Low, M.J.D. (1960). Kinetics of chemisorption of gases on solids. Chem. Rev. 60(3), 267–312. DOI: 10.1021/cr60205a003.DOI öffnenSearch in Google Scholar

49. Chen, H., Dou, J. & Xu, H. (2017). Removal of Cr (VI) ions by sewage sludge compost biomass from aqueous solutions: reduction to Cr (III) and biosorption. Appl. Surf. Sci. 425, 728–735. DOI: 10.1016/j.apsusc.2017.07.053.DOI öffnenSearch in Google Scholar

50. Araújo, C.S., Almeida, I.L., Rezende, H.C., Marcionilio, S.M., Léon, J.J. & de Matos, T.N. (2018). Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 137, 348–354. DOI: 10.1016/j.microc.2017.11.009.DOI öffnenSearch in Google Scholar

51. Al-Homaidan, A.A., Al-Qahtani, H.S., Al-Ghanayem, A.A., Ameen, F. & Ibraheem, I.B. (2018). Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi J. Biol. Sci. 25(8), 1733–1738. DOI: 10.1016/j.sjbs.2018.07.011.630317430591793DOI öffnenSearch in Google Scholar

52. Shouman, M.A., Fathy, N.A., Khedr, S.A., & Attia, A.A. (2013). Comparative biosorption studies of hexavalent chromium ion onto raw and modified palm branches. Adv. Phys. Chem. Vol. 2013. DOI: 10.1155/2013/159712.DOI öffnenSearch in Google Scholar

53. Khalifa, E.B., Rzig, B., Chakroun, R., Nouagui, H. & Hamrouni, B. (2019). Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemometr. Intell Lab. 189, 18–26. DOI: 10.1016/j.chemolab.2019.03.014.DOI öffnenSearch in Google Scholar

54. Mahmood-ul-Hassan, M., Suthor, V., Rafique, E. & Yasin, M. (2015). Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes. Environ. Monit. Assess. 187(2), 19. DOI: 10.1007/s10661-014-4258-8.25626568DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo