Uneingeschränkter Zugang

Calcium alginate/activated carbon/humic acid tri-system porous fibers for removing tetracycline from aqueous solution


Zitieren

1. Ahmed, M.B., Zhou, J.L., Ngo, H.H. & Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 532, 112–126. DOI: 10.1016/j.scitotenv.2015.05.130.10.1016/j.scitotenv.2015.05.13026057999Search in Google Scholar

2. Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M. &. Su X.(2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid & Interf. Sci. 368, 540–546. DOI: 10.1016/j.jcis.2011.11.015.10.1016/j.jcis.2011.11.01522138269Search in Google Scholar

3. Tayeri, V., Seidavi, A., Asadpour, L. & Phillips, C.J.C. (2018). A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Veter. Res. Commun. 42, 1–13.10.1007/s11259-018-9724-229777375Search in Google Scholar

4. Wang, Q., Li, X., Yang, Q., Chen, Y. & Du, B. (2019). Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria. DOI: 10.1016/j. ecoenv.2019.01.047. DOI: 10.1016/j.ecoenv.2019.01.047.10.1016/j.ecoenv.2019.01.04730660087Search in Google Scholar

5. Homem, V. & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices – a review. J. Environ. Manag. 92, 2304–2347. DOI: 10.1016/j.jenvman.2011.05.023.10.1016/j.jenvman.2011.05.02321680081Search in Google Scholar

6. Yang, Y., Liu, W., Xu, C., Wei, B. & Wang. J. (2017). Antibiotic resistance genes in lakes from middle and lower reaches of the Yangtze River, China: Effect of land use and sediment characteristics. Chemosphere 178, 19–25. DOI: 10.1016/j.chemosphere.2017.03.041.10.1016/j.chemosphere.2017.03.04128314124Search in Google Scholar

7. Le, X.T., Munekage, Y. & Kato, S. (2005). Antibiotic resistance in bacteria from shrimp farming in mangrove areas. Sci. The Total Environ. 349, 95–105. DOI: 10.1016/j. scitotenv.2005.01.006.Search in Google Scholar

8. Qiu, W., Sun, J., Fang, M., Luo, S., Tian, Y., Dong, P., Xu, B. & Zheng. C. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community. Sci. The Total Environ. DOI: 10.1016/j.scitotenv.2018.10.398.10.1016/j.scitotenv.2018.10.39830412878Search in Google Scholar

9. Jin, H., Kumar, A.P., Paik, D.-H., Ha, K.-Ch., Yoo, Y.-J. & Lee Y.-Ill. (2010). Trace analysis of tetracycline antibiotics in human urine using UPLC-QToF mass spectrometry. Microchem. J. 94, 139–147. DOI: 10.1016/j.microc.2009.10.010.10.1016/j.microc.2009.10.010Search in Google Scholar

10. Rong, H., Xin, X., Zuo, X., Nan, J. & Zhang, W. (2012). Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI micro-spheres. J. Hazard. Mater. 209–210, 137–145. DOI: 10.1016/j. jhazmat.2012.01.006.Search in Google Scholar

11. Wang, L., Ben, W., Li, Y., Liu, C. & Qiang, Z. (2018). Behavior of tetracycline and macrolide antibiotics in activated sludge process and their subsequent removal during sludge reduction by ozone. Chemosphere 206, 184–191. DOI: 10.1016/j. chemosphere.2018.04.180.Search in Google Scholar

12. Zhang, X., Lin, X., He, Y., Chen, Y., Luo, X. & Shang, R. (2019). Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. Int. J. Biol. Macromol. 124, 418–428. DOI: 10.1016/j.ijbiomac.2018.11.218.10.1016/j.ijbiomac.2018.11.21830496862Search in Google Scholar

13. Zhang, D., Yin, J., Zhao, H., Zhu, J. & Wang. C. (2015). Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon. J. Environ. Chem. Engin. 3, 1504–1512. DOI: 10.1016/j.jece.2015.05.014.10.1016/j.jece.2015.05.014Search in Google Scholar

14. Liu, P., Liu, W.J., Jiang, H., Chen, J.J., Li, W.W &. Yu, H.Q (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Biores. Technol. 121, 235–240. DOI: 10.1016/j.biortech.2012.06.085.10.1016/j.biortech.2012.06.08522858491Search in Google Scholar

15. Farooq, M. Bell, A.H., Almustapha, M.N. & Andresen, J.M. (2017). Bio-methane from an-aerobic digestion using activated carbon adsorption. Anaerobe 46, 33–40. DOI: 10.1016/j. anaerobe.2017.05.003.Search in Google Scholar

16. Yuan, G., Yue, Q., Gao, B., Sun, Y., Wang, W., Qian, L. & Yan, W. (2013). Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chem. Engin. J. 217, 345–353. DOI: 10.1016/j.cej.2012.09.038.10.1016/j.cej.2012.09.038Search in Google Scholar

17. Mahdavi, M., Ebrahimi, A., Mahvi, A.H., Fatehizadeh, A. & Azarpira, H. (2018). Experimental data for aluminum removal from aqueous solution by raw and iron-modified granular activated carbon. Data in Brief. 17, 731–738. DOI: 10.1016/j.dib.2018.01.06310.1016/j.dib.2018.01.063598838229876430Search in Google Scholar

18. Hao, B.P. & Zheng, P.S. (2010). Suggestion on Utilization and Development of Humic Acid in Ecological Agriculture Construction. J. Shanxi Agric. Sci. DOI: 10.1080/00949651003724790. DOI: 10.1080/00949651003724790.10.1080/00949651003724790Search in Google Scholar

19. Kloster, N. & Avena, M. (2015). Interaction of humic acids with soil minerals: adsorption and surface aggregation induced by Ca2+. Environ. Chem. 12, 37–39. DOI: 10.1071/EN14157.10.1071/EN14157Search in Google Scholar

20. Pils, J.R. &. Laird, D.A. (2007). Sorption of tetracyc-line and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ. Sci. & Technol. 41, 1928.10.1021/es062316y17410786Search in Google Scholar

21. Tombácz, E., Dobos, Á., Szekeres, M., Narres, H.D., Klumpp, E. & Dékány, I. (2000). Effect of pH and ionic strength on the interaction of humic acid with aluminium oxide. Colloid & Polym. Sci. 278, 337–345. DOI: 10.1007/s003960050522.10.1007/s003960050522Search in Google Scholar

22. Zhang, H., Omer, A.M., Hu, Z., Ly, Y., Ji, C. & Ouyang, X.K. (2019). Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption. Internat. J. Biolog. Macromol. 135, 490.10.1016/j.ijbiomac.2019.05.18531145956Search in Google Scholar

23. Dechojarassri, D., Omote, S., Nishida, K., Omura, T. & Tamura, H. (2018). Preparation of alginate fibers coagulated by calcium chloride or sulfuric acid: Application to the adsorption of Sr2. J. Hazard. Mater. 355, 154–161.10.1016/j.jhazmat.2018.05.02729787967Search in Google Scholar

24. Sarmento, B., Martins, S., Ribeiro, A., Veiga, F., Neufeld, R. & Ferreira, D. (2006). Development and Comparison of Different Nanoparticulate Polyelectrolyte Complexes as Insulin Carriers. Internat. J. Peptide Res. & Therap. 12, 131–138. DOI: 10.1007/s10989-005-9010-3.10.1007/s10989-005-9010-3Search in Google Scholar

25. Jing, Y., Wang, J. & Jiang, Y. (2016). Removal of Uranium from Aqueous Solution by Alginate Beads. Nuclear Engin. & Technol. 49, S1738573316301826. DOI: 10.1016/j. net.2016.09.004.Search in Google Scholar

26. Olad, A. & Azhar, F.F. (2014). A study on the adsorption of chromium (VI) from aqueous solutions on the alginate--montmorillonite/polyaniline nanocomposite. Desal. & Water Treatm. 52, 2548–2559. DOI: 10.1080/19443994.2013.794711.10.1080/19443994.2013.794711Search in Google Scholar

27. Pawar, R.R., Lalhmunsiama, Gupta, P., Sawant, S.Y., Shahmoradi, B. & Lee, S.M. (2018). Porous synthetic hecto-rite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. Internat. J. Biol. Macromol. 114, 1315–1324. DOI: 10.1016/j.ijbiomac.2018.04.008.10.1016/j.ijbiomac.2018.04.008Search in Google Scholar

28. Foroughi, J., Spinks, G.M., Wallace, G.G & Whitten, P.G. (2008). Production of polypyrrole fibres by wet spinning. Synt. Metals. 158, 104–107. DOI: 10.1016/j.synthmet.2007.12.008.10.1016/j.synthmet.2007.12.008Search in Google Scholar

29. Jiaguo, Y.U., Wang, S., Low, J. & Xiao, W. (2013). Enhanced photocatalytic performance of direct Z-scheme g-C3N4--TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890.10.1039/c3cp53131gSearch in Google Scholar

30. Gu, C., Karthikeyan, K.G., Sibley, S.D. & Pedersen, J.A. (2007). Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66, 1494–1501.10.1016/j.chemosphere.2006.08.028Search in Google Scholar

31. Chen, L.C., Lei, S., Wang, M.Z., Yang, J. & Ge, X.W. (2016). Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. Chin. Chem. Letters. 27, 511–517. DOI: 10.1016/j. cclet.2016.01.057.Search in Google Scholar

32. Choi, K.J., Kim, S.G. & Kim, S.H. (2008). Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 151, 38–43. DOI: 10.1016/j.jhazmat.2007.05.059.10.1016/j.jhazmat.2007.05.059Search in Google Scholar

33. Zhao, Y., Xueyuan, G.U., Gao, S., Geng, J. & Wang, X. (2012). Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects. Geoderma 183–184, 12–18. DOI: 10.1016/j.geoderma.2012.03.004.10.1016/j.geoderma.2012.03.004Search in Google Scholar

34. Dong, C., Zeng, Z., Zeng, Y., Fan, Z. & Wang, M. (2016). Removal of methylene blue and mechanism on magnetic γ-Fe 2 O 3 /SiO 2 nanocomposite from aqueous solution. Water Res. & Ind. 15, 1–13. DOI: 10.1016/j.wri.2016.05.003.10.1016/j.wri.2016.05.003Search in Google Scholar

35. La ngmuir, I. The constitution and fundamental properties of solids and liquids, DOI: 10.1016/s0016-0032(17)90938-x. DOI: 10.1016/s0016-0032(17)90938-x.10.1016/S0016-0032(17)90938-XSearch in Google Scholar

36. Kooh, M.R.R., Dahri, M.K., Lim, L.B. L., Lim, L.H. & Malik, O.A. (2016). Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling. Environ. Earth Sci. 75, 783. DOI: 10.1007/s12665-016-5582-9.10.1007/s12665-016-5582-9Search in Google Scholar

37. Gupta, V.K., Pathania, D., Sharma, S., Agarwal, S. & Singh, P. (2013). Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. J. Molec. Liquids 177, 343–352. DOI: 10.1016/j.molliq.2012.10.017.10.1016/j.molliq.2012.10.017Search in Google Scholar

38. Doğan, M., Alkan, M., Demirbaş, Ö., Özdemir, Y. & Özmetin, C. (2006). Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Engin. J. 124, 89–101. DOI: 10.1016/j.cej.2006.08.016.10.1016/j.cej.2006.08.016Search in Google Scholar

39. Ho, Y.S. & Chiang, C.C. (2001). Sorption Studies of Acid Dye by Mixed Sorbents. Adsorp. J. The Internat. Ads. Soc. 7, 139–147. DOI: 10.1023/A:1011652224816.10.1023/A:1011652224816Search in Google Scholar

40. Jiang, L. H., Liu, Y.G., Zeng, G.M., Xiao, F.Y., Hu, X.J., Hu, X., Wang, H., Li, T.T., Zhou, L. & Tan, X.F. (2016). Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Engin. J. 284, 93–102. DOI: 10.1016/j.cej.2015.08.139.10.1016/j.cej.2015.08.139Search in Google Scholar

41. Elmoubarki, R., Mahjoubi, F.Z., Tounsadi, H., Moustadraf, J., Abdennouri, M., Zouhri, A., Albani, A.E. & Barka, N. (2015). Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Res. & Ind. 9, 16–29. DOI: 10.1016/j.wri.2014.11.001.10.1016/j.wri.2014.11.001Search in Google Scholar

42. Wu, F.C., Tseng, R.L. &. Juang, R.S. (2005). Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid Interf. Sci. 283, 49–56. DOI: 10.1016/j.jcis.2004.08.037.10.1016/j.jcis.2004.08.03715694423Search in Google Scholar

43. Martins, A. C., Pezoti, O., Cazetta, A.L., Bedin, K.C., Yamazaki, D.A.S., Bandoch, G.F.G., Asefa, T., Visentainer, J.V. & Almeida, V.C. (2015). Removal of tetracycline by NaOH--activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Engin. J. 260, 291–299. DOI: 10.1016/j.cej.2014.09.017.10.1016/j.cej.2014.09.017Search in Google Scholar

44. Neghlani, P.K., Rafizadeh, M. &. Taromi, F.A. (2011). Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers. J. Hazard. Mater. 186, 182–189.10.1016/j.jhazmat.2010.10.12121131126Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik