Uneingeschränkter Zugang

Prediction of the fixed-bed reactor behavior for biotransformation with parallel enzyme deactivation using dispersion model: A case study on hydrogen peroxide decomposition by commercial catalase

 und   
31. Dez. 2019

Zitieren
COVER HERUNTERLADEN

1. Maria, G. (2012). Enzymatic reactor selection and derivation of the optimal operation policy, by using a model-based modular simulation platform. Comput. Chem. Eng. 36(0), 325–341. DOI: 10.1016/j.compchemeng.2011.06.006.10.1016/j.compchemeng.2011.06.006Search in Google Scholar

2. Maria, G. & Crisan M. (2015). Evaluation of optimal operation alternatives of reactors used for d-glucose oxidation in a bi-enzymatic system with a complex deactivation kinetics. Asia – Pac. J. Chem. Eng. 10(1), 22–4 4. DOI: 10.1002/apj.1825.10.1002/apj.1825Open DOISearch in Google Scholar

3. Berendsen, W.R., Lapin, A. & Reuss, M. (2007). Nonisothermal lipase-catalyzed kinetic resolution in a packed bed reactor: Modeling, simulation and miniplant studies. Chem. Eng. Sci. 62(9), 2375–2385. DOI: 10.1016/j.ces.2007.01.006.10.1016/j.ces.2007.01.006Open DOISearch in Google Scholar

4. Grubecki, I. (2016). How to run biotransformations—At the optimal temperature control or isothermally? Mathematical assessment. J. Proc. Control 44(0), 79–91. DOI: 10.1016/j.jprocont.2016.05.005.10.1016/j.jprocont.2016.05.005Search in Google Scholar

5. Tükel, S.S., Hürrem, F., Yildirim, D. & Alptekin, Ö. (2013). Preparation of crosslinked enzyme aggregates (CLEA) of catalase and its characterization. J. Mol. Catal. B: Enzym. 97(0), 252–257. DOI: 10.1016/j.molcatb.2013.09.007.10.1016/j.molcatb.2013.09.007Search in Google Scholar

6. Grigoras, A.G. (2017). Catalase immobilization—A review. Biochem. Eng. J. 117, Part B(0), 1–20. DOI: 10.1016/j.bej.2016.10.021.10.1016/j.bej.2016.10.021Search in Google Scholar

7. Grubecki, I. (2017). External mass transfer model for hydrogen peroxide decomposition by Terminox Ultra catalase in a packed-bed reactor. Chem. Proc. Eng. 38(2), 307–319. DOI: 10.1515/cpe-2017-0024.10.1515/cpe-2017-0024Open DOISearch in Google Scholar

8. Do, D.D. & Weiland, R.H. (1981). Fixed bed reactors with catalyst poisoning: First order kinetics. Chem. Eng. Sci. 36(1), 97–104. DOI: 10.1016/0009-2509(81)80051-6.10.1016/0009-2509(81)80051-6Search in Google Scholar

9. Do, D.D. & Weiland, R.H. (1981). Enzyme deactivation in fixed bed reactors with michaelis-menten kinetics. Biotechnol. Bioeng. 23(4), 691–705. DO I: 10.1002/bit.260230404.10.1002/bit.260230404Search in Google Scholar

10. Do, D.D. (1984). Enzyme deactivation studies in a continuous stirred basket reactor. Chem. Eng. J. 28(3), B51-B60. DOI: 10.1016/0300-9467(84)85063-7.10.1016/0300-9467(84)85063-7Search in Google Scholar

11. Do, D.D. & Weiland, R.H. (1981). Deactivation of single catalyst particles at large Thiele modulus. Travelling wave solutions. Ind. Eng. Chem. Fundam. 20(1), 48–54. DOI: 10.1021/i100001a009.10.1021/i100001a009Open DOISearch in Google Scholar

12. Costa, S.A., Tzanov, T., Filipa Carneiro, A., Paar, A., Gübitz, G.M. & Cavaco-Paulo, A. (2002). Studies of stabilization of native catalase using additives. Enzyme Microb. Technol. 30(3), 387–391. DOI: 10.1016/S0141-0229(01)00505-1.10.1016/S0141-0229(01)00505-1Open DOISearch in Google Scholar

13. Alptekin, Ö., Seyhan Tükel, S., Yildirim, D. & Alagöz, D. (2011). Covalent immobilization of catalase onto spacer-arm attached modified florisil: Characterization and application to batch and plug-flow type reactor systems. Enzyme Microb. Technol. 49(6–7), 547–554. DOI: 10.1016/j.enzmictec.2011.09.002.10.1016/j.enzmictec.2011.09.002Open DOISearch in Google Scholar

14. Trusek-Hołownia, A. & Noworyta, A. (2015). Efficient utilisation of hydrogel preparations with encapsulated enzymes – a case study on catalase and hydrogen peroxide degradation. Biotechnol. Rep. 6(0), 13–19. DOI: 10.1016/j.btre.2014.12.012.10.1016/j.btre.2014.12.012Search in Google Scholar

15. Ladero, M., Santos, A. & García-Ochoa, F. (2001). Diffusion and chemical reaction rates with nonuniform enzyme distribution: An experimental approach. Biotechnol. Bioeng. 72(4), 458–467. DOI: 10.1002/1097-0290(20000220)72:4<458::AIDBIT1007>3.0.CO;2-R.10.1002/1097-0290(20000220)72:4<458::AIDBIT1007>3.0.CO;2-Open DOISearch in Google Scholar

16. Ogura, Y. (1955). Catalase activity at high concentration of hydrogen peroxide. Archives of Biochemistry and Biophysics 57(2), 288–300. DOI: 10.1016/0003-9861(55)90291-5.10.1016/0003-9861(55)90291-5Open DOISearch in Google Scholar

17. Vasudevan, P.T. & Weiland, R.H. (1990). Deactivation of catalase by hydrogen peroxide. Biotechnol. Bioeng. 36(8), 783–789. DO I: 10.1002/bit.260360805.10.1002/bit.260360805Search in Google Scholar

18. Sherwood, T.G., Pigford, R.L. & Wilke, C.R. Mass Transfer, in: Clark B.J., Maisel J.W. (Eds.). New York, US A McGraw-Hill Inc.; 1975.Search in Google Scholar

19. Shen, L. & Chen, Z. (2007). Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62(14), 3748–3755. DOI: 10.1016/j.ces.2007.03.041.10.1016/j.ces.2007.03.041Open DOISearch in Google Scholar

20. Do, D.D. & Hossain, M.M. (1987). A new method to determine active enzyme distribution, effective diffusivity, rate constant for main reaction and rate constant for deactivation. Biotechnol. Bioeng. 29(5), 545–551. DO I: 10.1002/bit.260290502.10.1002/bit.260290502Search in Google Scholar

21. Martin, A.D. (2000). Interpretation of residence time distribution data. Chem. Eng. Sci. 55(23), 5907–5917. DOI: 10.1016/S0009-2509(00)00108-1.10.1016/S0009-2509(00)00108-1Open DOISearch in Google Scholar

22. Testu, A., Didierjean, S., Maillet, D., Moyne, C., Metzger, T. & Niass, T. (2007). Thermal dispersion for water or air flow through a bed of glass beads. Int. J. Heat Mass Transfer 50(7–8), 1469–1484. DOI: 10.1016/j.ijheatmasstransfer.2006.09.002.10.1016/j.ijheatmasstransfer.2006.09.002Open DOISearch in Google Scholar

23. Eissen, M., Zogg, A. & Hungerbühler, K. (2003). The runaway scenario in the assessment of thermal safety: simple experimental access by means of the catalytic decomposition of H2O2. J. Loss Prevent. Proc. 16(4), 289–296. DOI: 10.1016/S0950-4230(03)00022-6.10.1016/S0950-4230(03)00022-6Open DOISearch in Google Scholar

24. Dixon, A.G. & Cresswell, D.L. (1979). Theoretical prediction of effective heat transfer parameters in packed beds. AlChE J. 25(4), 663–676. DO I: 10.1002/aic.690250413.10.1002/aic.690250413Search in Google Scholar

25. Lin, S.H. (1991). Optimal feed temperature for an immobilized enzyme packed-bed reactor. J. Chem. Technol. Biotechnol. 50(1), 17–26. DOI: 10.1002/jctb.280500104.10.1002/jctb.2805001041366867Open DOISearch in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik