Zitieren

1. Behmadi, H., Moghaddam, Z.A., Poormorteza, N., Beyramabadi, S.A. & Nezhad, M.A.A. (2017). A four Components, One-Pot Synthesis of New Imidazole Molecular Tweezers Based on 2,4,6-Triarylpyridine as Hinge Region. Iran. J. Chem. Chem. Eng. (IJCCE), 36(1), 11–17.Search in Google Scholar

2. Weigelt, J., Itani, K., Stevens, D., Lau, W., Dryden, M., Knirsch, C. & Group, L.C.S. (2005). Linezolid versus Vancomycin in Treatment of Complicated Skin and Soft Tissue Infections. Antimicrob. Agents. Chemother., 49(6), 2260–2266. DOI: 10.1128/AAC.49.6.2260-2266.2005.10.1128/AAC.49.6.2260-2266.2005Open DOISearch in Google Scholar

3. McKeage, K. (2015). Finafloxacin: First Global Approval. Drugs, 75(6), 687–693. DOI://doi.org/10.1007/s40265-015-0384-z.10.1007/s40265-015-0384-zOpen DOISearch in Google Scholar

4. Mizuno, M., Tanaka, J. & Harada, I. (1981). Electronic spectra and structures of polyiodide chain complexes. J. Phys. Chem., 85, 1789–1794. https://doi.org/10.1021/j150613a006.10.1021/j150613a006Open DOISearch in Google Scholar

5. Nour, E.M., Chen, L.H. & Laane, J. (1986). Resonance Raman and far-infrared studies of charge-transfer complexes of iodine. J. Raman, Spectrosc., 17, 467–469. https://doi.org/10.1002/jrs.1250170608.10.1002/jrs.1250170608Open DOISearch in Google Scholar

6. Nour, E.M., Chen, L.H. & Laane, J. (1986). Far-infrared and Raman spectroscopic studies of polyiodides. J. Phys. Chem., 90, 2841–2846. https://doi.org/10.1021/j100404a014.10.1021/j100404a014Open DOISearch in Google Scholar

7. Mulazzi, E., Pollini, I., Piseri, L. & Tubino, R. (1981). Selective resonant Raman enhancement in polyiodide chains. Phys. Rev., (B) 24, 3555–3563. DOI: https://doi.org/10.1103/PhysRevB.24.3555.10.1103/PhysRevB.24.3555Open DOISearch in Google Scholar

8. Nour, E.M. (2000). Resonance Raman study of the polyiodide complex formed in the reaction of iodine with the polysulphur cyclic base 1,4,7,10,13,16-hexathiacyclooctadecane. Spectrochim. Acta., 56A, 167–170. https://doi.org/10.1016/S1386-1425(99)00130-4.10.1016/S1386-1425(99)00130-4Search in Google Scholar

9. Nour, E.M. & Shahada, L.A. (1988). Electronic spectral studies and solvent effects on the reaction of iodine with 1,4,8,11-tetraazacyclotetradecane. Spectrochim. Acta., 44A, 1277–1280. https://doi.org/10.1016/0584-8539(88)80169-7.10.1016/0584-8539(88)80169-7Open DOISearch in Google Scholar

10. Singh, N., Khan, I.M., Ahmad, A. & Javed, S. (2014). Preparation, spectral investigation and spectrophotometric studies of proton transfer complex of 2,2′-bipyridine with 3,5-dinitrobenzoic acid in various polar solvents. J. Mol. Struct., 1065–1066, 74–85. https://doi.org/10.1016/j.molstruc.2014.02.017.10.1016/j.molstruc.2014.02.017Search in Google Scholar

11. Khan, I.M., Shakya, S. & Singh, N. (2018). Preparation, single-crystal investigation and spectrophotometric studies of proton transfer complex of 2,6-diaminopyridine with oxalic acid in various polar solvents. J. Mol. Liq., 250, 150–161. https://doi.org/10.1016/j.molliq.2017.11.150.10.1016/j.molliq.2017.11.150Open DOISearch in Google Scholar

12. Khan, I.M., Alam, K., Alam, M.J. & Ahmad, M. (2019). Spectrophotometric and photocatalytic studies of H-bonded charge transfer complex of oxalic acid with imidazole: single crystal XRD, experimental and DFT/TD-DFT studies New J. Chem., 43, 9039–9051. DOI:10.1039/C9NJ00332K.10.1039/C9NJ00332Open DOISearch in Google Scholar

13. Khan, I.M. & Shakya, S. (2019). Exploring Colorimetric Real-Time Sensing Behavior of a Newly Designed CT Complex toward Nitrobenzene and Co2+: Spectrophotometric, DFT/TD-DFT, and Mechanistic Insights. ACS Omega, 4, 9983–9995. https://doi.org/10.1021/acsomega.9b01314.10.1021/acsomega.9b01314664828831460091Search in Google Scholar

14. Singh, N., Khan, I.M., Ahmad, A. & Javed, S. (2016). Synthesis, spectrophotometric and thermodynamic studies of charge transfer complex of 5,6-dimethylbenzimidazole with chloranilic acid at various temperatures in acetonitrile and methanol solvents. J. Mol. Liq., 221, 1111−1120. https://doi.org/10.1016/j.molliq.2016.06.081.10.1016/j.molliq.2016.06.081Open DOISearch in Google Scholar

15. Almalki, A.S.A., Alhadhrami, A., Adam, A.M.A., Grabchev, I., Almeataq, M., Al-Humaidi, J.Y., Sharshar, T. & Refat, M.S. (2018). Preparation of elastic polymer slices have the semiconductors properties for use in solar cells as a source of new and renewable energy. J. Photochem. Photobiol., A 361, 76–85. https://doi.org/10.1016/j.jphotochem.2018.05.001.10.1016/j.jphotochem.2018.05.001Open DOISearch in Google Scholar

16. Almalki, A.S.A., Alhadhrami, A., Obaid, R.J., Alsharif, M.A., Adam, A.M.A., Grabchev, I. & Refat, M.S. (2018). Preparation of some compounds and study their thermal stability for use in dye sensitized solar cells. J. Mol. Liq. 261, 565–582. https://doi.org/10.1016/j.molliq.2018.04.057.10.1016/j.molliq.2018.04.057Open DOISearch in Google Scholar

17. Datta, A.S., Bagchi, S., Chakrabortty, A. & Lahiri, S.C. (2015). Studies on the weak interactions and CT complex formations between chloranilic acid, 2,3-dichloro-5,6-dicyano-p-benzoquinone, tetracyanoethylene and papaverine in acetonitrile and their thermodynamic properties, theoretically, spectrophotometrically aided by FTIR. Spectrochim. Acta A, 146, 119–128. https://doi.org/10.1016/j.saa.2015.02.064.10.1016/j.saa.2015.02.06425813169Open DOISearch in Google Scholar

18. Saravanabhavan, M., Sathya, K., Puranik, V.G. & Sekar, M. (2014). Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies. Spectrochim. Acta A, 118, 399–406. https://doi.org/10.1016/j.saa.2013.08.115.10.1016/j.saa.2013.08.11524076456Open DOISearch in Google Scholar

19. Mohamed, M.E., Frag, E.Y.Z., Hathoot, A.A. & Shalaby, E.A. (2018). Spectrophotometric determination of fenoprofen calcium drug in pure and pharmaceutical preparations. Spectroscopic characterization of the charge transfer solid complexes. Spectrochim. Acta A, 189, 357–365. https://doi.org/10.1016/j.saa.2017.08.027.10.1016/j.saa.2017.08.02728830039Open DOISearch in Google Scholar

20. Shehab, O.R., AlRabi ah, H., Abdel-Aziz, H.A. & Mostafa, G.A.E. (2018). Charge-transfer complexes of cefpodoxime proxetil with chloranilic acid and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Experimental and theoretical studies. J. Mol. Liq. 257, 42–51. https://doi.org/10.1016/j.molliq.2018.02.083.10.1016/j.molliq.2018.02.083Open DOISearch in Google Scholar

21. Soltani, S., Magri, P., Rogalski, M. & Kadri, M. (2019). Charge-transfer complexes of hypoglycemic sulfonamide with π-acceptors: Experimental and DFT-TDDFT studies. J. Mol. Struct., 1175, 105–116. https://doi.org/10.1016/j.molstruc.2018.07.074.10.1016/j.molstruc.2018.07.074Open DOISearch in Google Scholar

22. Fathima, K.S., Sathiyendran, M. & Anitha, K. (2019). Structure elucidation, biological evaluation and molecular docking studies of 3-aminoquinolinium 2-carboxy benzoate-A proton transferred molecular complex. J. Mol. Struct., 1176, 238–248. https://doi.org/10.1016/j.molstruc.2018.08.020.10.1016/j.molstruc.2018.08.020Open DOISearch in Google Scholar

23. Man, L., Li, T., Wu, X., Lu, K., Yang, L., Liu, X., Yang, Z., Zhou, J. & Ni, C. (2019). Synthesis, crystal structure, vibrational spectra, nonlinear optical property of an organic charge-transfer compound―4-nitrobenzyl isoquinolinium picrate based on DFT calculations. J. Mol. Struct., 1175, 971–978. https://doi.org/10.1016/j.molstruc.2018.07.054.10.1016/j.molstruc.2018.07.054Open DOISearch in Google Scholar

24. Refat, M.S., Adam, A.M.A., Saad, H.A., Naglah, A.M. & Al-Omar, M.A. (2015). transfer-Charge Complexation and Photostability Characteristics of Iodine with bis-1,8-naphthalimide as a Photosensitive Biologically Active Units in Solution and in the Solid State: Linear Correlation of Photostability and Dissociation Energy. Int. J. Electrochem. Sci., 10, 6405–6421.10.1016/S1452-3981(23)06728-7Search in Google Scholar

25. Refat, M.S., Elfalaky, A., Elesh, E., Naglah, A.M. & Al-Omar, M.A. (2015). Electrical Properties on Charge Transfer Complex of Norfloxacin Drug with Iodine Acceptor. Int. J. Electrochem. Sci., 10, 6433–6443.10.1016/S1452-3981(23)06730-5Search in Google Scholar

26. Naglah, A.M., Al-Omar, M.A., Adam, A.M.A. & Refat, M.S. (2015). Charge-transfer Complexes Formed between the Sweeteners Saccharin Drug and Acido Acceptors: Structural, Thermal and Morphological Features. Int. J. Pharmacology, 11(8), 929–937. DOI: 10.3923/ijp.2015.929.937.10.3923/ijp.2015.929.937Search in Google Scholar

27. Refat, M.S., Saad, H.A., Eldaroti, H.H., Adam, A.M.A., Al-Omar, M.A. & Naglah, A.M. (2016). Charge-transfer interactions between nitrogen moieties as a basis for different drugs with a picric acid acceptor. ScienceAsia, 42(6), 397–406. doi: 10.2306/scienceasia1513-1874.2016.42.397.10.2306/scienceasia1513-1874.2016.42.397Open DOISearch in Google Scholar

28. Naglah, A.M., Al-Omar, M.A., Ibrahim, O.B., Refat, M.S., Adam, A.M.A., Saad, H.A. & El-Metwaly, N.M. (2016). Charge-transfer complexes of two highly efficient drugs with σ- and π-acceptors: Spectroscopic, thermal, and surface morphology characteristics. Russ. J. Gen. Chem., 86(4), 965–974. https://doi.org/10.1134/S1070363216040356.10.1134/S1070363216040356Open DOISearch in Google Scholar

29. Almalki, A.S.A., Naglah, A.M., Refat, M.S., Hegab, M.S., Adam, A.M.A. & Al-Omar, M.A. (2017). Liquid and solid-state study of antioxidant quercetin donor and TCNE acceptor interaction: Focusing on solvent affect on the morphological properties. J. Mol. Liq., 233, 292–302. https://doi.org/10.1016/j.molliq.2017.03.033.10.1016/j.molliq.2017.03.033Open DOISearch in Google Scholar

30. Arora, S., Kothiyal, N.C., Kumar, R., Shahab, S., Al-Wasidi, A.S., Al-Jafshar, N.M., Al-Otifi, J.S., Naglah, A.M., Refat, M.S., Alghamdi, M.T. & Adam, A.M.A. (2018). Experimental and Theoretical Studies of Charge Transfer Complex Formed Between the Antibiotic Drug Norfloxacin with Picric Acid: Density Functional Theory Approach. J. Biobased Materials and Bioenergy, 12(2), 203–210. https://doi.org/10.1166/jbmb.2018.1761.10.1166/jbmb.2018.1761Open DOISearch in Google Scholar

31. Skoog, D.A. (1985). Principle of Instrumetal Analysis, 3rd edn., Ch. 7, Saunders College Publishing, New York, USA.Search in Google Scholar

32. Harada, I., Tanaka, J. & Zuno, M.M. (1981). Electronic spectra and structures of polyiodide chain complexes. J. Phys. Chem., 85, 1789–1794. https://doi.org/10.1021/j150613a006.10.1021/j150613a006Open DOISearch in Google Scholar

33. Lever, A.B.P. (1985). Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam, p. 161.Search in Google Scholar

34. Tsubomura, H. & Lang, R.P. (1961). Molecular Complexes and Their Spectra. XIII. Complexes of Iodine with Amides, Diethyl Sulfide and Diethyl Disulfide. J. Am. Chem. Soc., 83, 2085–2092. https://doi.org/10.1021/ja01470a013.10.1021/ja01470a013Open DOISearch in Google Scholar

35. McConnel, H.M., Ham, J.J. & Platt, J.R. (1964). Regularities in the Spectra of Molecular Complexes. J. Chem. Phys., 21, 66–70. https://doi.org/10.1063/1.1698626.10.1063/1.1698626Open DOISearch in Google Scholar

36. Aloisi, G.G. & Pignataro, S. (1973). Molecular complexes of substituted thiophens with σand π acceptors. Charge transfer spectra and ionization potentials of the donors. J. Chem. Soc., Faraday Trans., 69, 534–539. DOI:10.1039/F19736900534.10.1039/19736900534Open DOISearch in Google Scholar

37. Foster, R. (1969). Organic Charge Transfer Complexes, Academic Press, London.Search in Google Scholar

38. Wheat, D.C. (1969–1970). Hand Book of Chemistry and Physics, 50th ed.Search in Google Scholar

39. Bellamy, L.J. (1975). The infrared Spectra of Complex Molecules, Chapman & Hall, London.10.1007/978-94-011-6017-9Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik