Uneingeschränkter Zugang

Numerical analysis of stress distribution generated in spherical polyethylene inserts by knee joint endoprotheses’ sleds


Zitieren

1. Gierzyńska-Dolna, M. (2002). Biotribology. Częstochowa. Publishing of Czestochowa University of Technology.Search in Google Scholar

2. Gierzyńska-Dolna, M. & Kubacki, J. (1999). Specificity of wear of hip and knee endoprostheses. Materials of II Symposium of Engineering Orthopedics and Protetics. IOP’99 Białystok. 45–51.Search in Google Scholar

3. Gierzyńska-Dolna, M. (1997). Tribological problems in natural and artificial human joint. Biomaterials Engineering. 2/1997.Search in Google Scholar

4. Long, M. & Rack, H.J. (1998). Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 19 (1998) 1621–1639.Search in Google Scholar

5. Zienkiewicz, O.C. (1972). Finite Elements Method. Publishing Arkady.Search in Google Scholar

6. Marciniak, J. (2002). Biomaterials. Gliwice. Publishing of Silesian University of Technology.Search in Google Scholar

7. Dygut, J. & Kuchta, M. (2015). Research on dynamics of the knee joint for different types of loads. Bio-Algorithms and Med-Systems. 11. 4. DOI: 10.1515/bams-2015-0022.10.1515/bams-2015-0022Open DOISearch in Google Scholar

8. Olinski, M., Gronowicz, A., Handke, A. &Ceccarelli, M. (2016). Design and characterization of a novel knee articulation mechanism. Internati. J. Appl. Mech. Engine. 21. 3. DOI: 10.1515/ijame-2016-0037.10.1515/ijame-2016-0037Search in Google Scholar

9. Dathe, H., Gezzi, R., Fiedler, Ch., Kubein-Meesenburg, D. & Nägerl, H. (2016). The description of the human knee as four-bar linkage. Acta of Bioengin. Biomech. 18. 4. DOI: 10.5277/ABB-00464-2015-03.10.5277/ABB-00464-2015-03Open DOISearch in Google Scholar

10. Nagerl, H., Dathe, H., Fiedler, Ch., Gowers, L., Kirsch, S., Kubein-Meesenburg, D., Dumont, C. & Wachowski, M.M. (2015). The morphology of the articular surfaces of biological knee joints provides essential guidance for the construction of functional knee endoprostheses. Acta of Bioengine. Biomech. 17. 2. DOI: 10.5277/ABB-00119-2014-02.Search in Google Scholar

11. Mielińska, A., Czamara, A., Szuba, Ł. & Będziński, R. (2015) Biomechanical characteristics of the jump down of healthy subjects and patients with knee injuries. Acta of Bioengineering and Biomechanics. 17. 2. DOI: 10.5277/ABB-00208-2014-04.10.5277/ABB-00208-2014-04Open DOISearch in Google Scholar

12. Ciszkiewicz, A. & Knapczyk, J. (2014) Parameters estimation for the spherical model of the human knee joint using vector method. Internat. J. Appl. Mech. Engine. 19. 3. DOI: 10.2478/ijame-2014-0035.10.2478/ijame-2014-0035Open DOISearch in Google Scholar

13. Hajduk, G., Nowak, K., Sobota, G., Kusz, D., Kopeć, K., Błaszczak, E., Cieliński, Ł. & Bacik, B. (2016). Kinematic gait parameters changes in patients after total knee arthroplasty: Comparison between cruciate-retaining and posterior-substituting design. Acta of Bioenginee. Biomech. 18. 3. DOI: 10.5277/ABB-00405-2015-03.10.5277/ABB-00405-2015-03Open DOISearch in Google Scholar

14. Melzer, P., Głowacki, M., Głowacki, J. & Misterska, E. (2014). Isokinetic evaluation of knee joint flexor and extensor muscles after tibial eminence fractures. Acta of Bioengine. Biomech. 16. 3. DOI: 10.5277/abb140313.10.5277/abb140313Open DOISearch in Google Scholar

15. Knapczyk, J. & Góra-Maniowska, M. (2017). Displacement analysis of the human knee joint based on the spatial kinematic model by using vector method. Acta Mech. Autom. 11. 4. DOI: 10.1515/ama-2017-0050.10.1515/ama-2017-0050Open DOISearch in Google Scholar

16. Krzywicka, M., Grudziński, J., Tatarczak, J. & Ścibisz, P. (2016). Study on the surface of the polymer insert of the knee replacement using pulsed thermography. Inż. Mater. 37. 2. DOI: 10.15199/28.2016.2.5.10.15199/28.2016.2.5Search in Google Scholar

17. Szmajda, M. & Bączkowicz, D. (2018). Use of incremental decomposition and spectrogram in vibroacoustic signal analysis in knee joint disease examination. Prze. Elektrotech. 94. 7. DOI: 10.15199/48.2018.07.41.10.15199/48.2018.07.41Search in Google Scholar

18. Wierzcholski, K. (2017). Geometrical structure for endoprosthesis surface lubrication and wear prognosis. J. KONES. 24. 4. DOI: 10.5604/01.3001.0010.3160.10.5604/01.3001.0010.3160Open DOISearch in Google Scholar

19. Korga, S., Makarewicz, A. & Lenik, K. (2015) Methods of discretization objects continuum implemented in fem preprocessors. Adv. Sci. Technol. Res. J. 9. 28. DOI: 10.12913/22998624/60800.10.12913/22998624/60800Search in Google Scholar

20. Musalimov, V., Monahov, Y., Tamre, M., Robak, D., Sivitski, A., Aryassov, G. & Penkov, I. (2018). Modelling of the human knee joint supported by active orthosis. Intern.J. Appl. Mech. Engine. 23. 1. DOI: 10.1515/ijame-2018-0007.10.1515/ijame-2018-0007Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik