Uneingeschränkter Zugang

Synthesis, characterization of Hollandite Ag2Mn8O16 on TiO2 nanotubes and their photocatalytic properties for Rhodamine B degradation


Zitieren

1. Chen, Q., Liu, H., Xin, Y., Cheng, X., Zhang, J., Li, J., Wang, P. & Li, H. (2013). Controlled anodic growth of TiO2 nanobelts and assessment of photoelectrochemical and photocatalytic properties. Electrochim. Acta. 99, 152–160. DOI: 10.1016/j.electacta.2013.03.032.10.1016/j.electacta.2013.03.032Open DOISearch in Google Scholar

2. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2013). Construction of N, S codoped TiO2 NCs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim. Acta. 103, 134–142. DOI: 10.1016/j.electacta.2013.04.072.10.1016/j.electacta.2013.04.072Open DOISearch in Google Scholar

3. Yao, Y., Li, K., Chen, S., Jia, J., Wang, Y. & Wang, H. (2012). Decolorization of hodamine B in a thin-film photo-electrocatalytic (PEC) reactor with slant-placed TiO2 nano-tubes electrode. J. Chem. Eng. 187, 29–35. DOI: 10.1016/j.cej.2012.01.056.10.1016/j.cej.2012.01.056Open DOISearch in Google Scholar

4. Sun, S., Chen, C., Sun, J., Peng, Q., Lü, K. & Deng, K. (2013). Enhancement of catalytic degradation of Rhodamine B under sunlight with Au loading TiO2 nanotube arrays. J. Procedia Environ. Sci. 18, 620–624. DOI: 10.1016/j.proenv.2013.04.085.10.1016/j.proenv.2013.04.085Open DOISearch in Google Scholar

5. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2013). Preparation and characterization of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic efficiency for degradation of Diclofenac. J. Hazard. Mater. 254, 141–148. DOI: 10.1016/j.jhazmat.2013.03.062.10.1016/j.jhazmat.2013.03.062Open DOISearch in Google Scholar

6. Yu, X., Zhang, Y. & Cheng, X. (2014). Preparation and photoelectrochemical performance of expanded graphite/TiO2 composite. Electrochim. Acta. 137, 668–675. DOI: 10.1016/j.electacta.2014.06.027.10.1016/j.electacta.2014.06.027Open DOISearch in Google Scholar

7. Zhong, H., Shaogui, Y., Yongming, J. & Cheng, S. (2009). Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: Mechanism implication. J. Environ. Sci. 21(2), 268–272. DOI: 10.1016/S1001-0742(08)62262-7.10.1016/S1001-0742(08)62262-7Open DOISearch in Google Scholar

8. Fan, M., Hu, S., Ren, B., Wang, J. & Jing, X. (2013). Synthesis of nanocomposite TiO2/ZrO2 prepared by different templates and photocatalytic properties for the photodegradation of Rhodamine B. J. Powder Technol. 235, 27–32. DOI: 10.1016/j.powtec.2012.09.042.10.1016/j.powtec.2012.09.042Search in Google Scholar

9. Cheng, X., Pan, G. & Yu, X. (2015). Visible light responsive photoassisted electrocatalytic system based on CdS NCs decorated TiO2 nano-tube photoanode and activated carbon containing cathode for wastewater treatment. Electrochim. Acta. 156, 94–101. DOI:10.1016/j.electacta.2015.01.04210.1016/j.electacta.2015.01.042Open DOISearch in Google Scholar

10. Chen, Q., Liu, H., Xin, Y. & Cheng, X. (2013). TiO2 nanobelts–effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties. Electrochim. Acta. 111, 284–291. DOI: 10.1016/j.electacta.2013.08.049.10.1016/j.electacta.2013.08.049Search in Google Scholar

11. Cheng, X., Yu, X. & Xing, Z. (2013). Synthesis and characterization of C–N–S tridoped TiO2 nano-crystalline photocatalyst and its photocatalytic activity for degradation of Rhodamine B. J. Phys. Chem. Solids 74(5), 684–690. DOI: 10.1016/j.jpcs.2013.01.004.10.1016/j.jpcs.2013.01.004Open DOISearch in Google Scholar

12. Zhang, J., Liu, H., Wang, B., Thabit, M. & Bai, H. (2015). Preparation of Pd/Go/Ti electrode and its electrochemical degradation for 2, 4-dichlorophenol. Materials & Design. 86, 664–669. DOI: 10.1016/j.matdes.2015.07.146.10.1016/j.matdes.2015.07.146Open DOISearch in Google Scholar

13. Hu, J., Jiang, N., Li, J., Shang, K., Lu, N. & Wu, Y. (2016). Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2 –TiO2/zeolite catalyst. Chem. Engine. J. 293, 216–224. DOI: 10.1016/j.cej.2016.02.036.10.1016/j.cej.2016.02.036Open DOISearch in Google Scholar

14. Luo, S., Zhou, W., Xie, A., Wu, F., Yao, C., Li, X., Zuo, S. & Liu, T. (2016). Effect of mno 2 polymorphs structure on the selective catalytic reduction of NOx with NH3 over TiO2 –palygorskite. Chem. Engine. J 286, 291–299. DOI: 10.1016/j.cej.2015.10.079.10.1016/j.cej.2015.10.079Open DOISearch in Google Scholar

15. Huang, Y.G., Zhang, X.H., Chen, X.B., Wang, H.Q., Chen, J.R., Zhong, X.X. & Li, Q.Y. (2015). Electrochemical properties of MnO2 -deposited TiO2 nanotube arrays 3d composite electrode for supercapacitors. Int. J. Hydrogen Energy. 40(41), 14331–14337. DOI: 10.1016/j.ijhydene.2015.05.014.10.1016/j.ijhydene.2015.05.014Open DOISearch in Google Scholar

16. Guo, X.L., Kuang, M., Li, F., Liu, X.Y., Zhang, Y.X., Dong, F. & Losic, D. (2016). Engineering of three dimensional (3-d) diatom@TiO2 @MnO2 composites with enhanced super-capacitor performance. Electrochim. Acta. 190, 159–167. DOI: 10.1016/j.electacta.2015.12.178.10.1016/j.electacta.2015.12.178Open DOISearch in Google Scholar

17. Ramesh, M., Nagaraja, H.S., Rao, M.P., Anandan, S. & Huang, N.M. (2016). Fabrication, characterization and catalytic activity of α-MnO2 nanowires for dye degradation of reactive black 5. Mater. Lett. 172, 85–89. DOI: 10.1016/j.matlet.2016.02.076.10.1016/j.matlet.2016.02.076Open DOISearch in Google Scholar

18. Zhou, H., Zou, X. & Zhang, Y. (2016). Fabrication of TiO2 @MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors. Electro-chim. Acta. 192, 259–267. DOI: 10.1016/j.electacta.2016.01.182.10.1016/j.electacta.2016.01.182Open DOISearch in Google Scholar

19. Cetinkaya, T., Tokur, M., Ozcan, S., Uysal, M. & Akbulut, H. (2016). Graphene supported α-MnO2 nanocomposite cathodes for lithium ion batteries. Int. J. Hydrogen Energy. 41(16), 6945–6953. DOI: 10.1016/j.ijhydene.2015.12.092.10.1016/j.ijhydene.2015.12.092Open DOISearch in Google Scholar

20. Yang, Y., Zhou, Y. & Wang, T. (2014). Preparation of optically active polyurethane/TiO2 /MnO2 multilayered nanorods for low infrared emissivity. Mater. Lett. 133(10), 269–273. DOI: 10.1016/j.matlet.2014.06.184.10.1016/j.matlet.2014.06.184Search in Google Scholar

21. Ma, Z. & Zhao, T. (2016). Reduced graphene oxide anchored with MnO2 nanorods as anode for high rate and long cycle lithium ion batteries. Electrochim. Acta. 201, 165–171. DOI: 10.1016/j.electacta.2016.03.200.10.1016/j.electacta.2016.03.200Open DOISearch in Google Scholar

22. Junlabhut, P., Boonruang, S., Mekprasart, W. & Pecharapa, W. (2016). Ag nanoparticle-doped SiO2 /TiO2 hybrid optical sensitive thin film for optical element applications. Surface & Coatings Technology. 306, 262–266. DOI: 10.1016/j.surfcoat.2016.06.033.10.1016/j.surfcoat.2016.06.033Open DOISearch in Google Scholar

23. Hussain, M., Tariq, S., Ahmad, M., Sun, H., Maaz, K., Ali, G., Hussain, S.Z., Iqbal, M., Karim, S. & Nisar, A. (2016). Ag TiO2 nanocomposite for environmental and sensing applications. Materials Chemistry & Physics. 181, 194–203. DOI: 10.1016/j.matchemphys.2016.06.049.10.1016/j.matchemphys.2016.06.049Open DOISearch in Google Scholar

24. Kim, J.H., Kim, D.H., Kim, S.K., Bae, D., Yoo, Y.Z. & Seong, T.Y. (2016). Control of refractive index by annealing to achieve high figure of merit for TiO2 /Ag/TiO2 multilayer films. Ceram. Int. 42(12), 14071–14076. DOI: 10.1016/j.cera-mint.2016.06.015.10.1016/j.cera-mint.2016.06.015Open DOISearch in Google Scholar

25. Khosravani, S., Dehaghi, S.B., Askari, M.B. & Khodadadi, M. (2016). The effect of various oxidation temperatures on structure of Ag-TiO2 thin film. Microelectron. Eng. 163, 67–77. DOI: 10.1016/j.mee.2016.06.008.10.1016/j.mee.2016.06.008Open DOISearch in Google Scholar

26. Zhao, Z., Sun, J., Xing, S., Liu, D., Zhang, G., Bai, L. & Jiang, B. (2016). Enhanced raman scattering and photocatalytic activity of TiO2 films with embedded ag nanoparticles deposited by magnetron sputtering. Journal of Alloys & Compounds. 679, 88–93. DOI: 10.1016/j.jallcom.2016.03.248.10.1016/j.jallcom.2016.03.248Open DOISearch in Google Scholar

27. Kuo, D.H., Hsu, W.T. & Yang, Y.Y. (2016). From the fluorescent lamp-induced bactericidal performance of sputtered Ag/TiO2 films to re-explore the photocatalytic mechanism. Applied Catalysis B Environmental. 184(1), 191–200. DOI: 10.1016/j.apcatb.2015.11.032.10.1016/j.apcatb.2015.11.032Open DOISearch in Google Scholar

28. Wang, X., Zhao, Z., Ou, D., Tu, B., Cui, D., Wei, X. & Cheng, M. (2016). Highly active Ag clusters stabilized on TiO2 nanocrystals for catalytic reduction of p -nitrophenol. Appl. Surf. Sci. 385, 445–452. DOI: 10.1016/j.apsusc.2016.05.147.10.1016/j.apsusc.2016.05.147Open DOISearch in Google Scholar

29. Zhong, J.S., Wang, Q.Y., Zhang, M., Chen, D.Q. & Ji, Z.G. (2016). In situ fabrication of TiO2 nanotube arrays sensitized by Ag nanoparticles for enhanced photoelectrochemical performance. Mater. Lett. 182, 163–167. DOI: 10.1016/j.matlet.2016.06.102.10.1016/j.matlet.2016.06.102Open DOISearch in Google Scholar

30. Nasrollahzadeh, M., Atarod, M., Jaleh, B. & Gandomirouzbahani, M. (2016). In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Int. 42(7), 8587–8596. DOI: 10.1016/j.ceramint.2016.02.088.10.1016/j.ceramint.2016.02.088Open DOISearch in Google Scholar

31. Rismanchian, A., Chen, Y.W. & Chuang, S.S.C. (2016). In situ infrared study of photoreaction of ethanol on Au and Ag/TiO2. Catal. Today. 264, 16–22. DOI: 10.1016/j.cattod.2015.07.038.10.1016/j.cattod.2015.07.038Open DOISearch in Google Scholar

32. Jia, Y., Ye, L., Kang, X., You, H., Wang, S. & Yao, J. (2016). Photoelectrocatalytic reduction of perchlorate in aqueous solutions over Ag doped TiO2 nanotube arrays. Journal of Photochemistry & Photobiology A Chemistry. 328, 225–232. DOI: 10.1016/j.jphotochem.2016.05.023.10.1016/j.jphotochem.2016.05.023Open DOISearch in Google Scholar

33. Karimipour, M., Ebrahimi, M., Abafat, Z. & Molaei, M. (2016). Synthesis of Ag@TiO2 core-shells using a rapid microwave irradiation and study of their nonlinear optical properties. Opt. Mater. 57, 257–263. DOI: 10.1016/j.optmat.2016.05.010.10.1016/j.optmat.2016.05.010Open DOISearch in Google Scholar

34. Yao, Y.C., Dai, X.R., Hu, X.Y., Huang, S.Z. & Jin, Z. (2016). Synthesis of Ag-decorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity. Appl. Surf. Sci. 387, 469–476. DOI: 10.1016/j.apsusc.2016.06.130.10.1016/j.apsusc.2016.06.130Open DOISearch in Google Scholar

35. Spadavecchia, F., Cappelletti, G., Ardizzone, S., Bianchi, C.L., Cappelli, S., Oliva, C., Scardi, P., Leoni, M. & Fermo, P. (2010). Solar photoactivity of nano-n-TiO2 from tertiary amine: Role of defects and paramagnetic species. J. Appl. Catal. 96(3), 314–322. DOI: 10.1016/j.apcatb.2010.02.027.10.1016/j.apcatb.2010.02.027Open DOISearch in Google Scholar

36. Pawlikowska, M., Fuks, H. & Tomaszewicz, E. (2017). Solid state and combustion synthesis of Mn2+ – doped scheelites – their optical and magnetic properties. Ceram. Int. (43)14135–14145. DOI: 10.1016/j.ceramint.2017.07.154.10.1016/j.ceramint.2017.07.154Open DOISearch in Google Scholar

37. Urbanowicz, P., Piątkowska, M., Sawicki, B., Groń, T., Kukuła, Z. & Tomaszewicz, E. (2015). Dielectric properties of RE2W2O9 (RE = Pr, Sm–Gd) ceramics. J. Eur. Ceram. Soc. 35(15), 4189–4193. DOI: 10.1016/j.jeurceramsoc.2015.07.028.10.1016/j.jeurceramsoc.2015.07.028Open DOISearch in Google Scholar

38. 36. Zhang, G.Q., Hendrickson, M., Plichta, E.J., Au, M. & Zheng, J.P. (2012). Preparation, Characterization and Electrochemical Catalytic Properties of Hollandite Ag2Mn8O16 for Li-Air Batteries. J. Electrochem. Soc. 159(3), A310–A314. DOI: 10.1149/2.085203jes.10.1149/2.085203jesOpen DOISearch in Google Scholar

39. Zhang, G., Zheng, J.P., Liang, R., Zhang, C., Wang, B., Au, M., Hendrickson, M. & Plichta, E.J. (2011). Multilayer hollandite Ag2Mn8O16 catalytic air electrodes for rechargeable lithium-air batteries. Electrode & Catalyst Nanostructures. DOI: 10.1149/1.3655436.10.1149/1.3655436Open DOISearch in Google Scholar

40. Khataee, A., Arefi-Oskoui, S., Fathinia, M., Esmaeili, A., Hanifehpour, Y., Joo, S.W. & Hamnabard, N. (2015). Synthesis, characterization and photocatalytic properties of er-doped PbSe nanoparticles as a visible light-activated photo-catalyst. J. Mol. Catal. A: Chem. 398, 255–267. DOI: 10.1016/j.molcata.2014.11.009.10.1016/j.molcata.2014.11.009Open DOISearch in Google Scholar

41. Hoffmann, M.R., Martin, S.T., Choi, W. & Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. J. Chem. Rev. 95(1), 69–96. DOI: 10.1021/cr00033a004.10.1021/cr00033a004Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik