Uneingeschränkter Zugang

Biodegradable polylactide and thermoplastic starch blends as drug release device – mass transfer study


Zitieren

1. Tian, H., Tang, Z., Zhuang, X., Chen, X. & Jing, X. (2012). Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37(2), 237–280. DOI: 10.1016/j.progpolymsci.2011.06.004.10.1016/j.progpolymsci.2011.06.004Open DOISearch in Google Scholar

2. Ulery, B.D., Nair, L.S. & Laurencin, C.T. (2011). Biomedical Applications of Biodegradable Polymers. Polym. Sci. B Polym. Phys. 49(12), 832–864. DOI: 10.1002/polb.22259.10.1002/polb.22259Open DOISearch in Google Scholar

3. Kulkarni, R.K., Moore, E.G., Hegyeli, A.F. & Leonard, F. (1971). Biodegradable poly(lactic acid) polymers. J. Biomed. Mater. Res. 5(3), 169−181. DOI: 10.1002/jbm.820050305.10.1002/jbm.820050305Open DOISearch in Google Scholar

4. Gilding, D.K. & Reed, A.M. (1979). Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers: 1. Polymer 20(12), 1459–1464. DOI: 10.1016/0032-3861(79)90009-0.10.1016/0032-3861(79)90009-0Open DOISearch in Google Scholar

5. Martina, M. & Hutmacher, D.W. (2007). Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56, 145–157. DOI: 10.1002/pi.2108.10.1002/pi.2108Open DOISearch in Google Scholar

6. Asghari, F., Samiei, M., Adibkia, K., Akbarzadeh, A. & Davaran, S. (2017). Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif. Cells Nanomed. Biotechnol. 45(2), 185–192. DOI: 10.3109/21691401.2016.1146731.10.3109/21691401.2016.114673126923861Open DOISearch in Google Scholar

7. Adeosun, S.O., Lawal, G.I. & Gbenebor, O.G. (2014). Characteristics of Biodegradable Implants. J. Mineral. Mater. Charact. Eng. 2, 88–106. DOI: 10.4236/jmmce.2014.22013.10.4236/jmmce.2014.22013Open DOISearch in Google Scholar

8. Friedman, J.A., Windebank, A.J., Moore, M.J., Spinner, R.J., Currier, B.L. & Yaszemski, M.J. (2002). Biodegradable Polymer Grafts for Surgical Repair of the Injured Spinal Cord. Neurosurgery 51(3), 742–752. DOI: 10.1227/00006123-200209000-00024.10.1097/00006123-200209000-00024Search in Google Scholar

9. Behrens, A.M., Lee, N.G., Casey, B.J., Sinivasan, P., Sikorski, M.J., Daristotle, J.L., Sandler, A.D. & Kofinas, P. (2015). Biodegradable-Polymer-Blend-Based Surgical Sealant with Body-Temperature-Mediated Adhesion. Adv. Mater. 27, 8056–8061. DOI: 10.1002/adma.201503691.10.1002/adma.201503691496142626554545Open DOISearch in Google Scholar

10. Gavasane, A.J. & Pawar, H.A. (2014). Synthetic biodegradable polymers used in controlled drug delivery system: an overview. Clin. Pharmacol. Biopharm. 3(2):121, 1–7. DOI: 10.4172/2167-065X.1000121.10.4172/2167-065X.1000121Search in Google Scholar

11. Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O.C. (2016). Degradable controlled-release polymers and nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663. DOI: 10.1021/acs.chemrev.5b00346.10.1021/acs.chemrev.5b00346Open DOISearch in Google Scholar

12. Fredenberg, S., Wahlgren, M., Reslow, M. & Axelsson, A. (2011). The mechanism of drug release in poly(lactic-coglycolic acid)-based drug delivery systems – a review. Int. J. Pharm. 415, 34–52. DOI: 10.1016/j.ijpharm.2011.05.049.10.1016/j.ijpharm.2011.05.049Open DOISearch in Google Scholar

13. Guilbert, S., Guillaume, C. & Gontard, N. (2010). New Packaging Materials Based on Renewable Resources: Properties, Applications, and Prospects. In: J. Aguilera, R. Simpson, J. Welti-Chanes, D. Bermudez-Aguirre & G. Barbosa-Canovas (Eds), Food Engineering Interfaces. Food Enginee. Ser. (pp. 619–630). Springer, New York, NY. DOI: 10.1007/978-1-4419-7475-4_26.10.1007/978-1-4419-7475-4_26Open DOISearch in Google Scholar

14. Iwata, T. (2015). Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 54, 3210–3215. DOI: 10.1002/anie.201410770.10.1002/anie.201410770Open DOISearch in Google Scholar

15. Zia, K.M., Noreen, A., Zuber, M., Tabasum, S. & Mujahid, M. (2016). Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. Int. J. Biol. Macromol. 82, 1028–1040. DOI: 10.1016/j.ijbiomac.2015.10.040.10.1016/j.ijbiomac.2015.10.040Open DOISearch in Google Scholar

16. Dorgan, J.R., Lehermeier, H.J., Palade, L.I. & Cicero, J. (2001). Polylactides: properties and prospects of an environmentally begin plastic from renewable resources. Macromol. Symp. 175, 55–66. DOI: 10.1002/1521-3900(200110)175:1<55::AIDMASY55> 3.0.CO;2-K.10.1002/1521-3900(200110)175:1<55::AIDMASY55>3.0.CO;2-Open DOISearch in Google Scholar

17. Kaur, L., Singh, J. & Liu, Q. (2007). Starch – A Potential Biomaterial for Biomedical Applications. In: M.R. Mozafari (Eds), Nanomaterials and Nanosystems for Biomedical Applications (pp. 83–98). Springer, Dordrecht. DOI: 10.1007/978-1-4020-6289-6_5.10.1007/978-1-4020-6289-6_5Open DOISearch in Google Scholar

18. Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M. & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 9, 552–571. DOI: 10.1111/j.1541-4337.2010.00126.x.10.1111/j.1541-4337.2010.00126.xOpen DOISearch in Google Scholar

19. Chen, Y., Geever, L.M., Killion, J.A., Lyons, J.G., Higginbotham, C.L. & Devine, D.M. (2016). Review of Multifarious Applications of Poly (Lactic Acid). Polym. Plast. Technol. Eng. 55(10), 1057–1075. DOI: 10.1080/03602559.2015.1132465.10.1080/03602559.2015.1132465Search in Google Scholar

20. Pluta, M. (2004). Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45(24), 8239–8251. DOI: 10.1016/j.polymer.2004.09.057.10.1016/j.polymer.2004.09.057Open DOISearch in Google Scholar

21. Nagarajan, V., Monhanty, A.K. & Misra, M. (2016). Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustainable Chem. Eng. 4, 2899–2916. DOI: 10.1021/acssuschemeng.6b00321.10.1021/acssuschemeng.6b00321Open DOISearch in Google Scholar

22. Saini, P., Arora, M. & Ravi Kumar, M.N.V. (2016). Poly(lactic acid) blends in biomedical applications. Adv. Drug Deliv. Rev. 107, 47–59. DOI: 10.1016/j.addr.2016.06.014.10.1016/j.addr.2016.06.01427374458Open DOISearch in Google Scholar

23. Alcázar-Alay, S.C. & Meireles, M.A.A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. Campinas 35(2), 215–236. DOI: 10.1590/1678-457X.6749.10.1590/1678-457X.6749Open DOISearch in Google Scholar

24. Liu, H., Xie, F., Yu, L., Chen, L. & Li, L. (2009). Thermal processing of starch-based polymers. Prog. Polym. Sci. 34(12), 1348–1368. DOI: 10.1016/j.progpolymsci.2009.07.001.10.1016/j.progpolymsci.2009.07.001Open DOISearch in Google Scholar

25. Zullo, R. & Iannace, S. (2009). The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohyd. Polym. 77(2), 376–383. DOI: 10.1016/j.carbpol.2009.01.007.10.1016/j.carbpol.2009.01.007Open DOISearch in Google Scholar

26. Nafchi, A.A., Moradpour, M., Saeidi, M. & Alias, A.K. (2013). Thermoplastic starches: properties, challenges and prospects. Starch 65, 61–72. DOI: 10.1002/star.201200201.10.1002/star.201200201Open DOISearch in Google Scholar

27. Kaseem, M., Hamad, K. & Deri, F. (2012). Thermoplastic starch blends: a review of recent works. Polym. Sci. A 54(2), 165–176. DOI: 10.1134/S0965545X1202006X.10.1134/S0965545X1202006XOpen DOISearch in Google Scholar

28. Huneault, M.A. & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polym. 48(1), 270–280. DOI: 10.1016/j.polymer.2006.11.023.10.1016/j.polymer.2006.11.023Open DOISearch in Google Scholar

29. Müller, C.M.O., Pires, A.T.N. & Yamashita, F. (2012). Characterization of Thermoplastic Starch/Poly(Lactic Acid) Blends Obtained by Extrusion and Thermopressing. J. Braz. Chem. Soc. 23(3), 426–434. DOI: 10.1590/S0103-50532012000300008.10.1590/S0103-50532012000300008Open DOISearch in Google Scholar

30. Siepmann, J. & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. J. Control. Release 161(2), 351–362. DOI: 10.1016/j.jconrel.2011.10.006.10.1016/j.jconrel.2011.10.00622019555Open DOISearch in Google Scholar

31. Trusek-Holownia, A. & Jaworska, P. (2015). Polymeric drug carriers – control of the daily dose and therapy duration. Bioc. Biomed. Eng. 35(3), 192–197. DOI: 10.1016/j.bbe.2014.11.001.10.1016/j.bbe.2014.11.001Open DOISearch in Google Scholar

32. Ostrowska, J., Kozioł, M., Bogusz, J., Sadurski, W. & Tyński, P. (2017). Biodegradable polymer composition on the basis of thermoplastic starch. Polish Patent Application P. 421850.Search in Google Scholar

33. Trusek-Holownia, A. (2003). A membrane phase contactor for enzymatic synthesis of ZAlaPheOMe, the precursor of bitter dipeptide. Biochem. Eng. J. 16(10), 69–77. DOI: 10.1016/S1369-703X(03)00143-8.10.1016/S1369-703X(03)00143-8Search in Google Scholar

34. Huang, M., Yu, J. & Ma, X. (2005). Ethanolamine as a novel plasticizer for thermoplastic starch. Polym. Degrad. Stabil. 90(3), 501–507. DOI: 10.1016/j.polymdegradstab.2005.04.005.10.1016/j.polymdegradstab.2005.04.005Open DOISearch in Google Scholar

35. Floyd, J.A., Galperin, A. & Ratner, B.D. (2015). Drug encapsulated polymeric microspheres for intracranial tumor therapy: A review of the literature. Adv. Drug Deliv. Rev. 91, 23–37. DOI: 10.1016/j.addr.2015.04.008.10.1016/j.addr.2015.04.00825895620Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik