Uneingeschränkter Zugang

Comparison of Hydrolytic Resistance of Polyurethanes and Poly(Urethanemethacrylate) Copolymers in Terms of their Use as Polymer Coatings in Contact with the Physiological Liquid


Zitieren

1. Król, P. (2008). Linear Polyurethans. Synthesis methods, chemical structures, properties and applications. Boston, USA: NV. Leiden, The Netherlands Leiden.10.1201/b12145Search in Google Scholar

2. Yang, Q. & Ye, L. (2013). Mechanical and thermal properties of polyurethane elastomers synthesized with toluene diisocyanate trimer. J. Polym. Sci. Part B: Polym. Phys. 52, 138–154. DOI: 10.1080/00222348.2012.695631.10.1080/00222348.2012.695631Search in Google Scholar

3. Ahmad, N., Khan, M.B., Ma, X., Ul-Haq, N. & IhtashamUr-Rehman. (2012). Dynamic mechanical characterization of the crosslinked and chain-extended HTPB based polyurethanes. Polym. Compos. 20, 683–692.10.1177/096739111202000803Search in Google Scholar

4. Liu, C., Zhang, Z., Liu, K.L., Ni, X. & Li, J. (2013). Biodegradable thermogelling poly(ester urethane)s consisting of poly(1,4-butylene adipate), poly(ethylene glycol), and poly(propylene glycol). Soft Matter. 9, 787–794. DOI: 10.1039/ C2SM26719E.10.1039/C2SM26719ESearch in Google Scholar

5. Yamamaoto, K., Kimura, T., Nam, K., Funamoto, S., Ito, Y., Shiba, K., Katoh, A., Shimizu, S., Kurita, K., Hihami, T., Masuzawa, T. & Kishida, A. (2011). Synthetic polymer-tissue adhesion using an ultrasonic scalpel. Surg. Endos. Other Unterventional Techniques 25, 1270–1275. DOI: 10.1007/s00464010-1357-7.Search in Google Scholar

6. Ma, Z., Hong, Y., Nelson, D.M., Pichamuthu, J.E., Lee-son, C.E. & Wagner, W.R. (2011). Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: Effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromol. 12, 3265–3264. DOI: 10.1021/bm2007168.10.1021/bm200716821761887Search in Google Scholar

7. Page, J.M., Prieto, E.M., Dumas, J.E., Zienkiewicz, K.J., Wenke, J.C., Brown-Baer, P. & Guelcher, S.A. (2012). Biocompatibility and chemical reaction kinetics of injectable, settable polyurethane/allograft bone biocomposites. Acta Biomater. 8, 4405–4416. DOI: dx.doi.org/10.1016/j.actbio.2012.07.037.10.1016/j.actbio.2012.07.03722871639Search in Google Scholar

8. Gogolewski, S. (1989). Selected topics in biomedical polyurethanes. A review. Coll. Polym. Sci. 267, 757–185. DOI: 10.1007/BF01410115.10.1007/BF01410115Search in Google Scholar

9. Król, P. & Byczyński, Ł. (2008). Infiuence of chemical structure on the values of free surface energy oft he coatings made of poly(urethane-siloxane) copolymers. Polimery 53, 808–816. [in Polish].10.14314/polimery.2008.808Search in Google Scholar

10. Seyedmehdi, S.A., Zhang, H. & Zhu, J. (2013). Fabrication of superhydrophobic coatings based on nanoparticles and fluoropolyurethane. J. Appl. Polym. Sci. 128, 4136-4140. DOI: 10.1002/app.38418.10.1002/app.38418Search in Google Scholar

11. Król, B., Król, P., Pielichowska, K. & Pikus, S. (2011). Comparison of phase structures and surface free energy values for the coatings synthesised from linear polyurethanes and from waterborne polyurethane cationomers. Coll. Polym. Sci. 289, 757–1767. DOI: 10.1007/s00396-011-2515-8.10.1007/s00396-011-2515-8320881422131639Search in Google Scholar

12. Wang, L.F. & Wie, Y.H. (2005). Effect of soft segment length on properties of fiuorinated polyurethanes. Coll. Surf. B: Biointerf. 41, 249–255. DOI: dx.doi.org/10.1016/j. colsurfb.2004.12.014.10.1016/j.colsurfb.2004.12.014Search in Google Scholar

13. Pereira, I.H.L., Ayres, E., Patricio, P.S., Góes, A.M., Gomide, V.S., Junior, E.P. & Oréfice, R.L. (2010). Photopolymerizable and injectable polyurethanes for biomedical applications: Synthesis and biocompatibility. Acta Biomater. 6, 3056–3066. DOI: dx.doi.org/10.1016/j.actbio.2010.02.036.10.1016/j.actbio.2010.02.036Search in Google Scholar

14. Król, P. & Chmielarz, P. (2013). Synthesis of PMMAb-PU-b-PMMA tri-block copolymers through ARGET ATRP in the presence of air. Express Polym. Lett. 7, 249–260. DOI: 10.3144/expresspolymlett.2013.23.10.3144/expresspolymlett.2013.23Search in Google Scholar

15. Sharifpoor, S., Labow, R. & Santerre, S.P.J. (2009). Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications. Biomacromol. 10, 2729–2739. DOI: 10.1021/bm9004194.10.1021/bm9004194Search in Google Scholar

16. Król, P. & Chmielarz, P. (2011). Controlled radical polymerization (CRP) methods in the synthesis of polyurethane copolymers. Polimery (in Polish) 56, 530–540.10.14314/polimery.2011.530Search in Google Scholar

17. Verma, H. & Tharanikkarasu, K. (2008). Novel telechelic 2-methyl-2-bromopropionate terminated polyurethane macro-initiator for the synthesis of ABA type tri-block copolymers through atom transfer radical polymerization of methyl methacrylate. Polym. J. 40, 867–874. DOI: 10.1295/polymj.PJ2007236.10.1295/polymj.PJ2007236Search in Google Scholar

18. Verma, H. & Tharanikkarasu, K. (2010). Atom transfer radical polymerization of methyl methacrylate using telechelic tribromo terminated polyurethane macroinitiator. J. Macromol. Sci. Part A: Pure Appl. Chem. 47, 407–415. DOI: 10.1080/10601321003699671.Search in Google Scholar

19. Szelest-Lewandowska, A., Masiulanis, B., Klocke, A., Glasmacher, B. & Glasmacher, B. (2003). Synthesis, physical properties and preliminary investigation of hemocompatibility of polyurethanes from aliphatic resources with castor oil participation. J. Biomater. Appl. 17, 221–236. DOI: 10.1177/0885328203017003480.10.1177/0885328203017003480Search in Google Scholar

20. Mondal, S. & Martin, D. (2012). Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polym. Degrad. Stab. 97, 1553–1561. DOI: 10.1016/j. polymdegradstab.2012.04.008.Search in Google Scholar

21. Stodolak, E., Paluszkiewicz, C., Błażewicz, M. & Kotela, I. (2009). In vitro biofilms formation on polymer matrix composites. J. Mol. Struct. 924, 562–566. DOI: dx.doi.org/10.1016/j. molstruc.2009.01.017.10.1016/j.molstruc.2009.01.017Search in Google Scholar

22. Król, P. & Chmielarz, P. (2014). Synthesis of PMMAb-PU-b-PMMA tri-block copolymers through ARGET ATRP of methyl methacrylate using tetraphenylethane-urethane macroiniferter in the presence of air. Polimery. (in Polish) 59, 279–292. DOI: dx.doi.org/10.14314/polimery.2014.279.10.14314/polimery.2014.279Search in Google Scholar

23. Król, P. & Pilch-Pitera, B. (2003). A study on the synthesis of urethane oligomers. Eur. Polym. J. 39, 1229–1241. DOI: dx.doi.org/10.1016/S0014-3057(02)00375-0.10.1016/S0014-3057(02)00375-0Search in Google Scholar

24. Owens, D.K., Wendt, R.C. (1969). Estimation of the surface free energy of polymers. J. Appl. Polymer Sci. 13, 1741–1747. DOI: 10.1002/app.1969.070130815.10.1002/app.1969.070130815Search in Google Scholar

25. Laib, S., Krieg, A., Rankl, M. & Seeger, S. (2006). Supercritical angle fluorescence biosensor for the detection of molecular interactions on cellulose-modified glass surfaces. Appl. Surf. Sci. 252, 7788–7793. DOI: dx.doi.org/10.1016/j. apsusc.2005.09.017.10.1016/j.apsusc.2005.09.017Search in Google Scholar

26. Zisman, W.A. (1964). Relation of the equilibrium contact angle to liquid and solid constitution. (Eds.) In F.M. Fowkes. Contact Angle, Wettability, and Adhesion. (pp. 1–51). Washington: American Chemical Society. DOI: 10.1021/ba-1964-0043.ch001.10.1021/ba-1964-0043.ch001Search in Google Scholar

27. Król, P., Lechowicz, J.B. & Król, B. (2013). Modelling the surface free energy parameters of polyurethane coats – part 1. Solvent-based coats obtained from linear polyurethane elastomers. Coll. Polym. Sci. 291, 1031–1047. DOI: 10.1007/ s00396-012-2826-4.10.1007/s00396-012-2826-4360262223525512Search in Google Scholar

28. Król, P., Lechowicz, J.B. & Król, B. (2013). Modelling the surface free energy parameters of polyurethane coats – part 2. Waterborne coats obtained from cationomer polyurethanes. Coll. Polym. Sci., sent to the Editor.Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik