Uneingeschränkter Zugang

Thermodynamic and mechanical characterisation of kaolin clay

 und    | 25. März 2014

Zitieren

1. Bilali, L., Kouhila, M., Benchanaa, M., Mokhlisse, A. & Belghith, A. (2001). Experimental study and modelling of isotherms of sorption of humid natural phosphate. Energy Convers. Manage. 42(4), 467-481. DOI: 10.1016/s0196-8904(00)00071-6.10.1016/S0196-8904(00)00071-6Search in Google Scholar

2. Jomaa, W. & Puiggali, J.R. (1991). Drying of shrinkage materials: modelling with shrinkage velocity. Drying Technol. 9(5), 1271-1293. DOI: 10.1080/07373939108916750.10.1080/07373939108916750Search in Google Scholar

3. Mihoubi, D. & Bellagi, A. (2009). Stress Generated During Drying of Saturated Porous Media. Transp. Por. Med. 80(3), 519-536. DOI: 10.1007/s11242-009-9378-1.10.1007/s11242-009-9378-1Search in Google Scholar

4. Kowalski, S.J. & Rybicki, A. (1996). Drying Stress Formation Induced by Inhomogeneous Moisture and Temperature Distribution. Transp. Por. Med. 24(2), 139-156. DOI: 10.1007/ bf00139842.10.1007/BF00139842Search in Google Scholar

5. Ketelaars, A.A. J. (1993). Drying deformable media, kinetics, shrinkage and stress. University of Endhoven.Search in Google Scholar

6. Zhang, Wshan & Mujumdar, A.S. (1992). Deformation and stress analysis of porous capillary bodies during intermittent volumetric thermal drying. Drying Technol. 10(2), 421-443. DOI: 10.1080/07373939208916444.10.1080/07373939208916444Search in Google Scholar

7. Akiyama, T., Liu, H. & Hayakawa, K.I. (1997). Hygrostress multi-crack formation and propagation in cylindrical viscoelastic food undergoing heat and moisture transfer processes. Int J. Heat Mass Transfer. 40(7), 1601-1609. DOI: 10.1016/s0017-9310(96)00206-2.10.1016/S0017-9310(96)00206-2Search in Google Scholar

8. Jia, C.C., Yang, W., Siebenmorgen, T.J. &Cnossen, A.G. (2002). Development of computer simulation software for single grain kernel drying, tempering, and stress analysis. Transactions of the Asae 45(5), 1485-1492.Search in Google Scholar

9. Mihoubi, D., Zagrouba, F., Vaxelaire, J., Bellagi, A. & Roques, M. (2004). Transfer phenomena during the drying of a shrinkable product: modelling and simulations. Drying Technol. 22(1-2), 91-109. DOI: 10.1081/drt-120028216.10.1081/DRT-120028216Search in Google Scholar

10. Hammouda, I. & Mihoubi, D (2013). Modelling of drying induced stress of clay: elastic and viscoelastic behaviours. Mechanics of Time-Dependent Materials. 1-15. DOI: 10.1007/ s11043-013-9216-2.Search in Google Scholar

11. Mihoubi, D. & Bellagi, A. (2012). Modeling of heat and moisture transfers with stress-strain formation during convective air drying of deformable media. Heat and Mass Transfer. 48(10), 1697-1705. DOI: 10.1007/s00231-012-1014-x.10.1007/s00231-012-1014-xSearch in Google Scholar

12. Kowalski, S.J., Musielak, G., Rybicki, A. & Sliwa, T. (2012). Stresses and Strains in Elastic, Viscoelastic, and Plastic Materials during Drying. Drying Technol. 30(11-12), 1176-1189. 10.1080/07373937.2012.69274510.1080/07373937.2012.692745Search in Google Scholar

13. Brasiello, A., Adiletta, G., Russo, P., Crescitelli, S., Albanese, D. & Di Matteo, M. (2013). Mathematical modeling of eggplant drying: Shrinkage effect. J. Food Eng. 114 (1), 99-105. DOI: 10.1016/j.jfoodeng.2012.07.031.10.1016/j.jfoodeng.2012.07.031Search in Google Scholar

14. Dhall, Ashish & Datta, Ashim, K. (2011). Transport in deformable food materials: A poromechanics approach. Chem. Eng. Sci. 66(24), 6482-6497. DOI: 10.1016/j.ces.2011.09.001.10.1016/j.ces.2011.09.001Search in Google Scholar

15. Wolf, W., Spiess, W.E.L. & Jung, G. (1985). Standardization of isotherm measurements (COST-Project 90 and 90 bis). In D. Simatos and J.L. Multon (Eds.), Properties of Water in Foods, vol. 90, 661-679, Springer Netherlands.10.1007/978-94-009-5103-7_40Search in Google Scholar

16. Ruegg, M. (1980). Calculation of the activity of water in sulphuric acid solutions at various temperatures. Lebensmittel- -Wissenschaft und Technologie. 13(22-24).Search in Google Scholar

17. Kechaou, N. (1989). Séchage des gels fortement déformables: études de la diffusion interne de l’eau et modélisation. Institut National Polytechnique de Loraine, Loraine.Search in Google Scholar

18. Miho ubi, D., Zagrouba, F., Ben Amor, M. & Bellagi, A. (2002). Drying of clay: I. Material Characteristics. Drying Technol. 20(2), 465-487. DOI: 10.1081/drt-120002552.10.1081/DRT-120002552Search in Google Scholar

19. Timo umi, S., Mihoubi, D. & Zagrouba, F. (2007). Shrinkage, vitamin C degradation and aroma losses during infra-red drying of apple slices. Lwt-Food Science and Technology. 40(9), 1648-1654. DOI: 10.1016/j.lwt.2006.11.008.10.1016/j.lwt.2006.11.008Search in Google Scholar

20. Miho ubi, D. & Bellagi, A. (2006). Thermodynamic analysis of sorption isotherms of bentonite. J Chem Thermodyn. 38(9), 1105-1110. DOI: 10.1016/j.jct.2005.11.010.10.1016/j.jct.2005.11.010Search in Google Scholar

21. Chem khi, S., Zagrouba, F. & Bellagi, A. (2004). Thermodynamics of water sorption in clay. Desalination. 166(1-3), 393-399. DOI: 10.1016/j.desal.2004.06.094.22. Coll ard, J.M. (1989). Etude des transferts d’humidité et des déformations pendant le séchage d’une plaque d’argile. thèse de doctorat, Thèse de l’université de Poitiers, 23. Langmuir, Ir ving (1918). The adsorption of gases on plane surfaces of glasses, mica et platinum. J. Am. Chem. Soc. 40(9), 1361-1403. DOI: 10.1021/ja02242a004.10.1021/ja02242a004Search in Google Scholar

24. Brunauer, S. , Deming, L.S., Deming, W.E. & Troller, E. (1940). On the theory of Van der Waals adsorption of gases. J. of Amer. Chem. Soc. 62, 1723-1732.10.1021/ja01864a025Search in Google Scholar

25. Bradley, R. S. (1936). Polymer adsorbed fi lms. Part I. The adsorption of argon on salt crystals at low temperatures and the determination of surface fi elds. J. of Chem. Soc. 58, 1467-1474.10.1039/jr9360001467Search in Google Scholar

26. Kühn, I. (1964). A new theoretical analysis of adsorption phenomena. Introductory part: The characteristic expression of the main regular types of adsorption isotherms by a single simple equation. J. of Coll. Sci. 19(8), 685-698. http://dx.doi.org/10.1016/0095-8522(64)90076-510.1016/0095-8522(64)90076-5Search in Google Scholar

27. Zsigmondy, R. (1911). Über die struktur des gels der kieselsaure, Theorie der entwasserung. Zeitschrift für anorganische Chemie. 71(1), 356-377. DOI: 10.1002/zaac.19110710133.10.1002/zaac.19110710133Search in Google Scholar

28. Henderson, S.M. (1952). A basic concept of equilibrium moisture. Agriculture Engineering. 33(1), 23-32.Search in Google Scholar

29. Iglesias, H.A. & Chirife, J. (1976). Prediction of the effect of temperature on water sorption isotherms of food material. Int. J. Food Sci. Technol. 11(2), 109-116. DOI: 10.1111/j.1365-2621.1976.tb00707.x.10.1111/j.1365-2621.1976.tb00707.xSearch in Google Scholar

30. Lykov, A.V. (19 55). Experimentelle und theoretische grundlagen der trocknung V. E. B. Verlag.Search in Google Scholar

31. Iglesias, H. A. & Chirife, J. (1978). An empirical equation for fi tting water sorption isotherms of fruits and related products. Canadian Institute of Food Science and Technology Journal. 11(1), 12-15. http://dx.doi.org/10.1016/S0315-5463(78)73153-610.1016/S0315-5463(78)73153-6Search in Google Scholar

32. Roques, M. (1988 ). Equilibre entre un solvant et un solide, stage de perfectionnement de séchage. Centre de Perfectionnement des Industries Chimiques de Nancy.Search in Google Scholar

33. Anderson, Robert B. (1946). Modifi cations of the Brunauer, Emmett and Teller Equation1. J. Am. Chem. Soc. 68(4), 686-691. DOI: 10.1021/ja01208a049.10.1021/ja01208a049Search in Google Scholar

34. Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60(2), 309-319. DOI: 10.1021/ja01269a023.10.1021/ja01269a023Search in Google Scholar

35. Thompson, T.L., P eart, R.M. & Foster, G.H. (1986). Mathematical simulation of corn drying: a new model. Transactions of the American Society of Agricultural Engineers 11(4), 0582-0586. DOI: 10.13031/2013.39473.10.13031/2013.39473Search in Google Scholar

36. Chirife, J. & I glesias, H.A. (1978). Equations for fi tting water sorption isotherms of foods: Part 1 - a review. Int. J. Food Sci. Technol. 13(3), 159-174. DOI: 10.1111/j.1365-2621.1978.tb00792.x10.1111/j.1365-2621.1978.tb00792.xSearch in Google Scholar

37. Peleg, M. (199 3). Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. Journal of Food Process Engineering. 16(1), 21-37. DOI: 10.1111/j.1745-4530.1993.tb00160.x.10.1111/j.1745-4530.1993.tb00160.xSearch in Google Scholar

38. Rizvi, S.S.H. ( 2005). Thermodynamics of food and dehydration. In Engineering Properties of Foods, Third Edition: CRC Press.10.1201/9781420028805.ch7Search in Google Scholar

39. Arslan, N. & T oğrul, H. (2005). Moisture Sorption Isotherms for Crushed Chillies. Biosyst. Eng. 90(1), 47-61. http://dx.doi.org/10.1016/j.biosystemseng.2004.10.00810.1016/j.biosystemseng.2004.10.008Search in Google Scholar

40. McMinn, W.A.M., Al -Muhtaseb, A.H. & Magee, T.R.A. (2005). Enthalpy-entropy compensation in sorption phenomena of starch materials. Food Res. Int. 38(5), 505-510. http://dx.doi.org/10.1016/j.foodres.2004.11.00410.1016/j.foodres.2004.11.004Search in Google Scholar

41. Pourcel, F., Jomaa , W., Puiggali, J.R. &Rouleau, L. (2007). Crack Appearance during Drying of an Alumina Gel: Thermo-Hydro-Mechanical Properties. Drying Technol. 25(4-6), 759-766. DOI: 10.1080/07373930701370134.10.1080/07373930701370134Search in Google Scholar

42. Takhar, Pawan, S. ( 2011). Hybrid Mixture Theory Based Moisture Transport and Stress Development in Corn Kernels During Drying: Coupled Fluid Transport and Stress Equations. J. Food Eng. 105(4), 663-670. http://dx.doi.org/10.1016/j.jfoodeng2011.03.033 Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik