1. bookVolumen 15 (2013): Heft 3 (September 2013)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-4741
ISSN
1509-8117
Erstveröffentlichung
03 Jul 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

The application of ultrafiltration for separation of glycerol solution fermented by bacteria

Online veröffentlicht: 20 Sep 2013
Volumen & Heft: Volumen 15 (2013) - Heft 3 (September 2013)
Seitenbereich: 115 - 120
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-4741
ISSN
1509-8117
Erstveröffentlichung
03 Jul 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

A biotechnological synthesis generated a fermentation broth containing the dissociated forms of organic compounds and residual mineral salts. An effective method of selective removal of the ionic species and organic compounds from solutions comprises nanofiltration and reverse osmosis. Ultrafiltration (UF) was used in this work as a pre-treatment method for the preparation of feed for these processes. The UF study was carried out with a real broth, which was obtained using Citrobacter freundii bacteria for the fermentation of glycerol solutions, resulting in the UF permeate with turbidity below 0.1 NTU. However, a significant decline of the permeate flux was observed during the UF process. The influence of the transmembrane pressure on the fouling intensity of used ceramic membranes was investigated. A periodical membrane cleaning was carried out by rinsing with water and a 1 wt % solution of sodium hydroxide. The applied cleaning procedures permitted to restore the initial permeate flux.

Keywords

1. Gungormusler, M., Gonen, C. & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture, Bioprocess Biosyst. Eng. 34, 727-733. DOI: 10.1007/s00449-011-0522-2.10.1007/s00449-011-0522-2Search in Google Scholar

2. Liu, B., Christiansen, K., Parnas, R., Xu, Z. & Li, B. (2013). Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol, Int. J. HydrogenEnergy, 383, 196-205. DOI: 10.1016/j.ijhydene.2012.12.135.10.1016/j.ijhydene.2012.12.135Search in Google Scholar

3. Leja, K., Czaczyk, K. & Myszka, K. (2011). The use of microorganisms in 1,3-Propanediol production, Afr. J. Microbiol. Res., 5 (26), 4652-4658. DOI: 10.5897/AJMR11.847.10.5897/AJMR11.847Search in Google Scholar

4. Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, Ch. & Soucaille, P. (1993). Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum, Appl. Microbiol. Biotechnol., 38, 453-457. DOI: 10.1073_pnas.0734105100.Search in Google Scholar

5. Barbirato, F., Himmi, El H., Conte, T. & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries, Ind. Crops Prod., 7, 281-289. DOI: 10.1016/S0926-6690(97)00059-9.10.1016/S0926-6690(97)00059-9Search in Google Scholar

6. Metsoviti, M., Zeng, An.P., Koutinas, A.A. & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses, J. Biotechnol., 163, 408-418. DOI: 10.1016/j.jbiotec.2012.11.018.10.1016/j.jbiotec.2012.11.01823220217Search in Google Scholar

7. Anand, P. & Saxena, R.K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol of growth and 1,3-propanediol production from Citrobacter freundii, New Biotechol., 29, 199-205. DOI: 10.1016/j. nbt.2011.05.010.Search in Google Scholar

8. Boenigk, R., Bowien, S. & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii, Appl. Microbiol. Biotechnol., 38, 453-457. DOI: 10.1007/BF00242936.10.1007/BF00242936Search in Google Scholar

9. Xiu, Z.L. & Zeng, A.P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol., 78, 917-926. DOI: 10.1007/s00253-008-1387-4.10.1007/s00253-008-1387-418320188Search in Google Scholar

10. Li, Z., Jiang, B., Hang, D. & Xiu, Z. ( 2009). Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths, Sep. Purif. Technol., 66, 472-478. DOI: 10.1016/j.seppur.2009.02.009.10.1016/j.seppur.2009.02.009Search in Google Scholar

11. Wu, R.C., Ren, H.J. Xu, Y.Z. & Liu, D.H. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Sep. Purif. Technol, 73, 122-125. DOI: 10.1016/j.seppur.2010.03.013.10.1016/j.seppur.2010.03.013Search in Google Scholar

12. Annand, P., Saxena, R.K. & Marwah, R.G. (2011). A novel downstream process for 1,3-propanediol from glycerol- -based fermentation, Appl. Microbiol. Biotechnol., 90, 1267-1276. DOI: 10.1007/s00253-011-3161-2.10.1007/s00253-011-3161-221360149Search in Google Scholar

13. Vellenga, E. & Trägårdh, G. (1998). Nanofiltration of combined salt and sugar solutions: coupling between retentions. Desalination, 120, 211-220. DOI: 10.1016/s0011-9164(98)00219-7.10.1016/S0011-9164(98)00219-7Search in Google Scholar

14. Schäfer, A.I., Fane, A.G. & Waite, T.D. (Eds.). (2005). Nanofiltration: Principles and applications. Oxford, UK: Elsevier Advanced Technology.Search in Google Scholar

15. Bonnélye, V., Guey, L. & Del Castillo, J. (2008). UF/ MF as RO pre-treatment: the real benefit, Desalination, 222, 59-65. DOI: 10.1016/j.desal.2007.01.129.10.1016/j.desal.2007.01.129Search in Google Scholar

16. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2009). Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension-Characterization of hydraulic and chemical cleanliness, J. Membr. Sci., 337, 153-174. DOI: 10.1016/j.memsci.2009.03.033.10.1016/j.memsci.2009.03.033Search in Google Scholar

17. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with z whey protein concentrate, Food Bioproducts Process., 82 (C3), 231-234. DOI: 10.1205/fbio.82.3.231.44182.10.1205/fbio.82.3.231.44182Search in Google Scholar

18. Ogunbiyi, O.O., Miles, N.J. & Hilal, N. (2008). The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension, Desalination, 220, 273-289. DOI: 10.1016/j.desal.2007.01.034.10.1016/j.desal.2007.01.034Search in Google Scholar

19. Juang, R.S., Chen, H.L. & Chen, Y.S. (2008). Resistance-in-series analysis in cross-flow ultrafiltration of fermentation broths of Bacillus subtilis culture, J. Membr. Sci., 323, 193-200. DOI: 10.1016/j.memsci.2008.06.032.10.1016/j.memsci.2008.06.032Search in Google Scholar

20. Markardij, A., Chen, X.D. & Farid, M.M. (1999). Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning, Food Bioproducts Process., 77, 107-113. DOI: 10.1205/096030899532394.10.1205/096030899532394Search in Google Scholar

21. Karasu, K., Glennon, N., Lawrence, N.D., Stevens, G.W., O’Connor, J.O., Barber, A.R., Yoshikawa, S. & Kentish, S.E. (2010). A comparison between ceramic and polymeric membrane systems for casein concentrate manufacture, Int. J. Dairy Technol., 63 (2), 284-289. DOI: 10.1111/j.1471-0307.2010.00582.x.10.1111/j.1471-0307.2010.00582.xSearch in Google Scholar

22. Hwang, K.J., Wang, T.T., Iritani, E. & Katagiri, N. (2010). Effect of gel particle softness on the performance of cross-flow microfiltration, J. Membr. Sci., 35, 130-137. DOI: 10.1016/j. memsci.2010.08.043.Search in Google Scholar

23. Kazemimoghadam, M. & Mohammadi, T. (2007). Chemical cleaning of ultrafiltration membranes in the milk industry, Desalination, 204, 213-218. DOI: 10.1016/j.desal.2006.04.030.10.1016/j.desal.2006.04.030Search in Google Scholar

24. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency, Food Bioproducts Process, 82 (C3), 231-243. DOI: 10.1205/ fbio.82.3.231.44182.10.1205/fbio.82.3.231.44182Search in Google Scholar

25. Cabero, M.L., Riera, F.A. & Alvarez, R. (1999). Rinsing of ultrafiltration ceramic membranes fouled with whey proteins: effects on cleaning procedures, J. Membr. Sci. 154, 239-250. DOI: 10.1016/S0376-7388(98)00294-4.10.1016/S0376-7388(98)00294-4Search in Google Scholar

26. Bachin, P., Aimar, P. & Field, R.W. (2006). Critical and sustainable fluxes: Theory, experiments and applications, J. Membr. Sci., 281, 42-69. DOI: 10.1016/j.memsci.2006.04.014.10.1016/j.memsci.2006.04.014Search in Google Scholar

27. Nigam, M.O., Bansal, B. & Chen, X.D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes, Desalination, 218, 313-322. DOI: 10.1016/j. desal.2007.02.027.Search in Google Scholar

28. Madaeni, S.S. & Mansourpanah, Y. (2004). Chemical cleaning of reverse osmosis membranes fouled by whey, Desalination, 161, 13-24. DOI: 10.1016/S0011-9164(04)90036-7. 10.1016/S0011-9164(04)90036-7Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo