Uneingeschränkter Zugang

Model Reference Adaptive Control of SPS-Based Dual Active Bridge Converter with Constant Power Loading


Zitieren

AL-Nussairi, M. K., Bayindir, R., Padmanaban, S., Mihet-Popa, L. and Siano, P. (2017). Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques. Energies, 10(10), p. 1656. doi: 10.3390/en10101656. Search in Google Scholar

Brando, G., Del Pizzo, A. and Meo, S. (2018). Modelreference adaptive control of a dual active bridge DC-DC converter for aircraft applications. In: SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 20–22 June 2018, Amalfi, Italy: IEEE, pp. 502–506. doi: 10.1109/SPEEDAM.2018.8445242. Search in Google Scholar

Csizmadia, M. and Kuczmann, M. (2022) Extended Feedback Linearisation Control of Non-ideal DCDC Buck Converter in Continuous-conduction Mode, Power Electronics and Drives, 7(42), pp. 1–8. doi: 10.2478/pead-2022-0001. Search in Google Scholar

Do, T. A., Nguyen, Q. D. and Vu, P. (2024). Design and Implementation of a Current-FED Dual Active Bridge Converter for an AC Battery. Journal of Electrical Engineering, 75(1), pp. 47–55. doi: 10.2478/jee-2024-0007. Search in Google Scholar

Dragičević, T., Lu, X., Vasquez, J. C. and Guerrero, J. M. (2016). DC Microgrids – Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Transactions on Power Electronics, 31(7), pp. 4876–4891. doi: 10.1109/TPEL.2015.2478859. Search in Google Scholar

Hajji, S., Zayani, H., Bouaziz, N. and Ben Chehida, R. (2020). Sensorless Induction Motor Drive Based on Model Reference Adaptive System Scheme Utilising a Fictitious Resistance. Power Electronics and Drives, 5(41), pp. 199–213. doi: 10.2478/pead-2020-0015. Search in Google Scholar

He, J., Chen, Y., Lin, J., Chen, J., Cheng, L. and Wang, Y. (2023). Review of Modeling, Modulation, and Control Strategies for the Dual-Active-Bridge DC/DC Converter. Energies, 16(18), p. 6646. doi: 10.3390/en16186646. Search in Google Scholar

Hossain, M. Z., Rahim, N. A. and Selvaraj, J. (2018). Recent Progress and Development on Power DC-DC Converter Topology, Control, Design and Applications: A Review. Renewable and Sustainable Energy Reviews, 81(Part 1), pp. 205–230. doi: 10.1016/j.rser.2017.07.017. Search in Google Scholar

Iqbal, M. T., Maswood, A. I., Dehghani Tafti, H., Tariq, M. and Bingchen, Z. (2020). Explicit Discrete Modelling of Bidirectional Dual Active Bridge DC-DC Converter using Multi-Time Scale Mixed System Model. IET Power Electronics, 13(18), pp. 4252–4260. doi: 10.1049/iet-pel.2020.0293. Search in Google Scholar

Leonard, J. P. (2014). Nonlinear Modeling of DC Constant Power Loads with Frequency Domain Volterra Kernels. Available at: https://diginole.lib.fsu.edu/islandora/object/fsu%3A252857. Search in Google Scholar

Liutanakul, P., Awan, A. and Pierfederici, S. (2010). Linear Stabilization of a DC Bus Supplying a Constant Power Load: A General Design Approach. IEEE Transactions on Power Electronics, 25(2), pp. 475–488. doi: 10.1109/TPEL.2009.2025274. Search in Google Scholar

Lucas, K. E., Pagano, D. J., Plaza, D. A., Vaca-Benavides, D. A. and Ríos, S. J. (2020). Robust Feedback Linearization Control for DAB Converter Feeding a CPL. IFAC-PapersOnLine, 53(2), pp. 13402–13409. doi: 10.1016/j.ifacol.2020.12.178. Search in Google Scholar

Meng, X., Jia, Y., Xu, Q., Ren, C., Han, X. and Wang, P. (2023). A Novel Intelligent Nonlinear Controller for Dual Active Bridge Converter with Constant Power Loads. IEEE Transactions on Industrial Electronics, 70(3), pp. 2887–2896. doi: 10.1109/TIE.2022.3170608. Search in Google Scholar

Mueller, J. A. and Kimball, J. W. (2018). An Improved Generalized Average Model of DC-DC Dual Active Bridge Converters. IEEE Transactions on Power Electronics, 33(11), pp. 9975–9988. doi: 10.1109/TPEL.2018.2797966. Search in Google Scholar

Qin, H. and Kimball, J. W. (2012). Generalized Average Modeling of Dual Active BRIDGE DCDC Converter. IEEE Transactions on Power Electronics, 27(4), pp. 2078–2084. doi: 10.1109/TPEL.2011.2165734. Search in Google Scholar

Radwan, A. A. A. and Mohamed, Y. A. R. I. (2012). Linear Active Stabilization of Converter-Dominated DC Microgrids. IEEE Transactions on Smart Grid, 3(1), pp. 203–216. doi: 10.1109/TSG.2011.2162430. Search in Google Scholar

Rahimi, A. M., Williamson, G. A. and Emadi, A. (2010). Loop-Cancellation Technique: A Novel Nonlinear Feedback to Overcome the Destabilizing Effect of Constant-Power Loads. IEEE Transactions on Vehicular Technology, 59(2), pp. 650–661. doi: 10.1109/TVT.2009.2037429. Search in Google Scholar

Rahimi, A. M. and Emadi, A. (2009). Active Damping in DC/DC Power Electronic Converters: A Novel Method to Overcome the Problems of Constant Power Loads. IEEE Transactions on Industrial Electronics, 56(5), pp. 1428–1439. doi: 10.1109/TIE.2009.2013748. Search in Google Scholar

Shah, S. S. and Bhattacharya, S. (2017). Large & small signal modeling of dual active bridge converter using improved first harmonic approximation. In: Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition (APEC), 26–30 March 2017, Tampa, FL, USA: IEEE, pp. 1175–1182. doi: 10.1109/APEC.2017.7930844. Search in Google Scholar

Shao, S., Chen, L., Shan, Z., Gao, F., Chen, H., Sha, D. and Dragičević, T. (2022). Modeling and Advanced Control of Dual-Active-Bridge DCDC Converters: A Review. IEEE Transactions on Power Electronics, 37(2), pp. 1524–1547. doi: 10.1109/TPEL.2021.3108157. Search in Google Scholar

Singh, S., Fulwani, D. and Kumar, V. (2015). Robust Sliding-Mode Control of DC/DC Boost Converter Feeding a Constant Power Load. IET Power Electronics, 8(7), pp. 1230–1237. doi: 10.1049/IET-PEL.2014.0534. Search in Google Scholar

Veeramraju, K. J. P., Cardoza, A., Sarangapani, J. and Kimball, J. W. (2022). Robust modifications to model reference adaptive control for reference voltage tracking in a dual active bridge DC-DC converter. In: 2022 IEEE Energy Conversion Congress and Exposition (ECCE), 09–13 October 2022, Detroit, MI, USA: IEEE. doi: 10.1109/ECCE50734.2022.9947779. Search in Google Scholar

Wang, J. and Howe, D. (2008). A Power Shaping Stabilizing Control Strategy for DC Power Systems with Constant Power Loads. IEEE Transactions on Power Electronics, 23(6), pp. 2982–2989. doi: 10.1109/TPEL.2008.2004594. Search in Google Scholar

Wu, J. and Lu, Y. (2019). Adaptive Backstepping Sliding Mode Control for Boost Converter With Constant Power Load. IEEE Access, 7, pp. 50797–50807. doi: 10.1109/ACCESS.2019.2910936. Search in Google Scholar

Wu, M. and Lu, D. D. C. (2015). A Novel Stabilization Method of LC Input Filter with Constant Power Loads Without Load Performance Compromise in DC Microgrids. IEEE Transactions on Industrial Electronics, 62(7), pp. 4552–4562. doi: 10.1109/TIE.2014.2367005. Search in Google Scholar

Yousefizadeh, S., Bendtsen, J. D., Vafamand, N., Khooban, M. H., Blaabjerg, F. and Dragičević, T. (2019). Tracking Control for a DC Microgrid Feeding Uncertain Loads in More Electric Aircraft: Adaptive Backstepping Approach. IEEE Transactions on Industrial Electronics, 66(7), pp. 5644–5652. doi: 10.1109/TIE.2018.2880666. Search in Google Scholar

Zhang, Y., Wang, Y., Ni, K. and Hu, Y. (2020). Bidirectional DC–AC Converter-Based Communication Solution for Microgrid. Power Electronics and Drives, 5(1), pp. 177–188. doi: 10.2478/pead-2020-0013. Search in Google Scholar

Zorgani, Y. A., Jouili, M., Koubaa, Y. and Boussak, M. (2019). A Very-Low-Speed Sensorless Control Induction Motor Drive with Online Rotor Resistance Tuning by Using MRAS Scheme. Power Electronics and Drives, 4(39), pp. 125–140. doi: 10.2478/pead-2018-0021. Search in Google Scholar

eISSN:
2543-4292
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Informatik, Künstliche Intelligenz, Technik, Elektrotechnik, Elektronik