Uneingeschränkter Zugang

Laser Power Transmission and Its Application in Laser-Powered Electrical Motor Drive: A Review


Zitieren

Alejnikov, V. S., Artjushenko, V. G., Belyaev, V. P., Vojtsekhovsky, V. V., Dianov, E. M., Lisitsky, I. S., Butvina, L. N., Masychev, V. I., Savenkova, T. N. and Sysoev, V. K. (1985). Fibre-Optic Cable for CO and CO2 Laser Power Transmission. Optics and Laser Technology, 17(4), pp. 213–214.10.1016/0030-3992(85)90091-X Search in Google Scholar

Anon. (2011). Rapid Development of Photovoltaic Technology. Dual-use Technology and Products, 11(3). Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=HTJM201103007&uniplatform=NZKPT&v=%25mmd2Fd92uus1kgPPnbLzbkNe3pQJBESOmY03XWhvUv88I8cvpiRf5bp1BO%25mmd2BJYNQLR%25mmd2BUa Search in Google Scholar

AUVSI. (2012). Laser Motive, Lockheed Demonstrate Real-World Laser Power. [Online]. Available at: https://www.flightglobal.com/news/articles/auvsilasermotive-lockheed-demonstrate-real-world-laser-375166/ Search in Google Scholar

Balaguer, C. and Abderrahim, M. ed. (2008). Robotics and Automation in Construction. BoD–Books on Demand, pp. 373–380.10.5772/86 Search in Google Scholar

Becker, D. E., Chiang, R. and Keys, C. C. (2013). Photovoltaic Concentrator Based Power Beaming for Space Elevator Application. AIP Conference Proceedings. American Institute of Physics, 1230(1), pp. 271–281. Search in Google Scholar

Becker, D. E., Chiang, R., Keys, C. C., Lyjak, A. W., Nees, J. A. and Starch, M. D. (2010). Photovoltaic Concentrator-Based Power Beaming for Space Elevator Application. AIP Conference Proceedings, 1230(1), pp. 271–281.10.1063/1.3435443 Search in Google Scholar

Billat, A., Blanc, J., Kuhnhenn, J. and Ricci, D. (2017). Photobleaching Effects in Multi-Mode Radiation Resistant Optical Fibers. 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS), pp. 1–3.10.1109/RADECS.2017.8696251 Search in Google Scholar

Bogachev, A. V., Garanin, S. G., Dudov, A. M., Eroshenko, V. A., Kulikov, S. M., Mikaelian, G. T., Panarin, V. A., Pautov, V. O., Rus, A. V. and Sukharev, S. A. (2012). Diode Pumped Caesium Vapor Laser with Closed Cycle Laser Active Medium Circulation. Quantum Electronics, 42(2), pp. 95–98.10.1070/QE2012v042n02ABEH014734 Search in Google Scholar

Brand, T., Unger, A., Koehler, B., Wolf, P., Beczkowiak, A. and Biesenbach, J. (2013). Diode Laser Platform for Multi-kW Applications. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 32–33.10.1109/HPD.2013.6706604 Search in Google Scholar

Bull, S., Kaunga-Nyirenda, S. N. and Larkins, E. C. (2013). Design Considerations for High-Power External Cavity Laser Diodes. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 6–7.10.1109/HPD.2013.6706591 Search in Google Scholar

Cotal, H. L., Lillington, D. R., Ermer, J. H., King, R. R., Karam, N. H., Kurtz, S. R., Friedman, D. J., Olson, J. M., Ward, S., Duda, A. and Emery, K. A. (2000). Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells. National Renewable Energy Lab. Search in Google Scholar

Guo, A. and Sun, Q. (2007). Progress of Semiconductor Solar Cell Technology Based on GaAs. Chinese Journal of Power Sources, 31(9), pp. 757–758. Search in Google Scholar

Han, M. (2018). Study on Photoelectric Conversion Efficiency of GaAs Concentrator Cells Under Laser Irradiation. Nanjing University of Aeronautics and Astronautics. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201901&filename=1019800556.nh&uniplatform=NZKPT&v=s%25mmd2FiHMT7eJYbThD4OCb%25mmd2BMLlncq0HXdeU9F7R2QzvnVxHVzxWYMSpjhbuYNccxBuo3 Search in Google Scholar

Helal, M. A., Bull, S., Kaunga-Nyirenda, S. N., Lim, J. J. and Larkins, E. C. (2013). Simulation of High-Brightness Diode Lasers with Optical Feedback from Modules and Systems. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 14–15.10.1109/HPD.2013.6706595 Search in Google Scholar

Helmers, H., Armbruster, C., von Ravenstein, M., Derix, D. and Schoner, C. (2020). 6-W Optical Power Link With Integrated Optical Data Transmission. IEEE Transactions on Power Electronics, 35(8), pp. 7904–7909.10.1109/TPEL.2020.2967475 Search in Google Scholar

Hengesbach, S., Witte, U., Traub, M. and Hoffmann, D. (2013). Design of a DFB/DBR Diode Laser Module Including Spectral Multiplexing Based on VBGs. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 16–17.10.1109/HPD.2013.6706596 Search in Google Scholar

Huang, H. (2013). Theoretical and Experimental Study on Feedback Resonant Laser Energy Transmission. Doctor’s Thesis. Tsinghua University. Search in Google Scholar

Huang, R. K., Samson, B., Chann, B., Lochman, B. and Tayebati, P. (2015). Recent Progress on High-Brightness kW-Class Direct Diode Lasers. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 29–30.10.1109/HPD.2015.7439679 Search in Google Scholar

Jin, K. and Zhou, W. (2019). Wireless Laser Power Transmission: A Review of Recent Progress. IEEE Transactions on Power Electronics, 34(4), pp. 3842–3859.10.1109/TPEL.2018.2853156 Search in Google Scholar

Kalyuzhnyy, N. A., Emelyanov, V. M., Evstropov, V. V., Mintairov, S. A., Mintairov, M. A., Nahimovich, M. V., Salii, R. A. and Shvarts, M. Z. (2020). Optimization of Photoelectric Parameters of InGaAs Metamorphic Laser (λ = 1064 nm) Power Converters with Over 50% Efficiency. Solar Energy Materials and Solar Cells, 217, pp. 110710.10.1016/j.solmat.2020.110710 Search in Google Scholar

Kawashima, N. and Takeda, K. (2005). Laser Energy Transmission for a Wireless Energy Supply to Robots. Robotics and Automation in Construction, 10, pp. 373–380.10.22260/ISARC2005/0068 Search in Google Scholar

Kawashima, N., Takeda, K. and Yabe, K. (2007). Application of the Laser Energy Transmission Technology to Drive a Small Airplane. Chinese Optics Letters, 5(101), pp. S109–S110. Search in Google Scholar

Kinsey, G. S., Hebert, P., Barbour, K. E., Krut, D. D., Cotal, H. L., Sherif, R. A. (2009). Concentrator Multijunction Solar Cell Characteristics Under Variable Intensity and Temperature. Progress in Photovoltaics: Research and Applications, 16(6), pp. 503–508.10.1002/pip.834 Search in Google Scholar

Kleine, K. and Balu, P. (2017). High-Power Diode Laser Sources for Materials Processing. 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 3–4.10.1109/HPD.2017.8261076 Search in Google Scholar

Krasnoshchoka, A., Xu, J., Thorseth, A., Dam-Hansen, C., Jensen, O. B. (2019). High Luminous Flux Laser Lighting Using Single-Crystal Ce:YAG Phosphor. 2019 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 31–32.10.1109/HPD48113.2019.8938604 Search in Google Scholar

Liu, F. (2016). Xie Honggang. Effect of γ-radiation on optical fiber dispersion. Infrared and Laser Engineering, 45(1), pp. 116–121.10.3788/irla201645.0118001 Search in Google Scholar

Lucas-Leclin, G., Schimmel, G., Albrodt, P., Hanna, M. and Georges, P. (2017). Coherent Combining Architectures for High-Brightness Laser Diodes. 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 49–50.10.1109/HPD.2017.8261095 Search in Google Scholar

McComb, T. S., Sims, R. A., Willis, C. C., Kadwani, P., Shah, L. and Richardson, M. (2010). Atmospheric Transmission Testing Using a Portable, Tunable, High Power Thulium Fiber Laser System. CLEO/QELS: 2010 Laser Science to Photonic Applications, pp. 1–2.10.1364/CLEO.2010.JThJ5 Search in Google Scholar

McCormick, D., Irwin, D., Stapleton, D., Braker, J., Koenning, T. and Patterson, S. (2015). Ultra-Narrow Spectral Linewidth Diode Lasers for the Pumping of Alkalis. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 25–26.10.1109/HPD.2015.7439677 Search in Google Scholar

Mohammadnia, A., Ziapour, B. M., Ghaebi, H. and Khooban, M.H. (2021). Feasibility Assessment of Next-Generation Drones Powering by Laser-Based Wireless Power Transfer. Optics and Laser Technology, 143, pp. 107283.10.1016/j.optlastec.2021.107283 Search in Google Scholar

Nishioka, K., Sueto, T., Uchina, M. and Ota, Y. (2010). Detailed Analysis of Temperature Characteristics of an InGaP/InGaAs/Ge Triple-Junction Solar Cell. Journal of Electronic Materials, 39(6), pp. 704–708.10.1007/s11664-010-1171-y Search in Google Scholar

Nishioka, K., Takamoto, T., Agui, T., Kaneiwa, M., Uraoka, Y. and Fuyuki, T. (2006). Annual Output Estimation of Concentrator Photovoltaic Systems Using High-Efficiency InGaP/InGaAs/Ge Triple-Junction Solar Cells Based on Experimental Solar Cell’s Characteristics and Field-Test Meteorological Data. Solar Energy Materials and Solar Cells, 90(1), pp. 57–67.10.1016/j.solmat.2005.01.011 Search in Google Scholar

Raible, D. E. (2008). High Intensity Laser Power Beaming for Wireless Power Transmission. Master’s Thesis, Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, OH, 5. Search in Google Scholar

Raible, D. E. (2011). Free Space Optical Communications with High Intensity Laser Power Beaming. Doctor’s Thesis, Department of Electrical and Computer Engineering, Cleveland state University, Cleveland, OH, 6. Search in Google Scholar

Reng, N. and Beck, T. (1993). Transmission Properties of All-Silica Fibres for High-Power Nd: YAG Lasers. Optics and Laser Technology, 25(2), pp. 117–124.10.1016/0030-3992(93)90106-P Search in Google Scholar

Röhner, M., Wagner, L., Pietrzak, A. and Hülsewede, R. (2013). Fiber-Coupled High-Power Diode-Lasers with Highest Radiance. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 36–37.10.1109/HPD.2013.6706606 Search in Google Scholar

Rossin, V., Peters, M., Demir, A., Morehead, J. J., Guo, J., Xiao, Y., Cheng, J., Hsieh, A., Duesterberg, R. and Skidmore, J. (2015). High Power, High Brightness Diode Lasers for kW Lasers Systems. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 35–36.10.1109/HPD.2015.7439682 Search in Google Scholar

Rubenchik, A. M., Fedoruk, M. P. and Turitsyn, S. K. (2009). Laser Beam Self-Focusing in the Atmosphere. Physical Review Letters, 102(23), pp. 233902.10.1103/PhysRevLett.102.23390219658935 Search in Google Scholar

Sahai, A. and Graham, D. (2011). Optical Wireless Power Transmission at Long Wavelengths. 2011 International Conference on Space Optical Systems and Applications, pp. 164–170.10.1109/ICSOS.2011.5783662 Search in Google Scholar

Shi, D., Zhang, L., Ma, H., Wang, Z., Wang, Y. and Cui, Z. (2016). Research on Wireless Power Transmission System Between Satellites. 2016 IEEE Wireless Power Transfer Conference (WPTC), pp. 1–4. Search in Google Scholar

Song, Z. (2018). Energy Transfer Technology of 975 nm Fiber Coupled Semiconductor Laser. Space Electronic Technology, 15(2), pp. 101–105. Search in Google Scholar

Steinsiek, F., Foth, W. P. and Weber, K. H. (2003). Wireless Power Transmission Experiment as an Early Contribution to Planetary Exploration Mission. Bremen: the 54th International Astronautical Congress, 3, pp. 169–176.10.2514/6.IAC-03-R.3.06 Search in Google Scholar

Summerer, L. and Purcell, O. (2009). Concepts for Wireless Energy Transmission via Laser. Europeans Space Agency (ESA)-Advanced Concepts Team. Search in Google Scholar

Sumpf, B. (2016). Wavelength Stabilized High-Power Diode Lasers — Devices and Applications. 2016 International Conference Laser Optics (LO), pp. R3–3.10.1109/LO.2016.7549713 Search in Google Scholar

Wang, H. and Jiang, D. (2017). Design of High Temperature Gate Driver for SiC MOSFET for EV Motor Drives. 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific, pp. 1–6.10.1109/ITEC-AP.2017.8080762 Search in Google Scholar

Wang, N. (2011). Research on the Key Technology of Laser Active Power Supply in Wireless Sensor Networks. Chongqing University. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFD1214&filename=1012008792.nh&uniplatform=NZKPT&v=upBXyQhlId8gcVYbV32d%25mmd2BP%25mmd2F3KIMCwre%25mmd2Bp5GNwtWS3MTW7ZEQ4gBCA4ZeOL723TBE Search in Google Scholar

Wang, W., Li, M. and Ji, X. (2012). A Novel Fresnel Concentrator for GaAs Cells. Acta Optica Sinica, 7, pp. 198–204. Search in Google Scholar

Wang, X. and Zhang, Y. (2012). Research Status and Development Trends of GaAs Trijunction Solar Cells. National MOCVD Academic Conference. Search in Google Scholar

Wang, Z., Zhang, H. and Liu, Y. (2013). Theoretical and Experimental Analysis of Electrical Characteristics of InGaP/GaAs/Ge Three-junction GaAs Photovoltaic Cells. Proceedings of the CSEE, 33(27), pp. 168–174. Search in Google Scholar

Wen, J. (2020). Fabrication and Properties of Radiation Resistant Polarization Keeping Fiber. Flight Control and Detection. 3(02), pp. 81–85. Search in Google Scholar

Witte, U., Hamann, M., Di Meo, A., Rubel, D., Traub, M. and Hoffmann, D. (2015). High Power Diode Laser with 23W ex 35 μm Fibre. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 17–18.10.1109/HPD.2015.7439673 Search in Google Scholar

Witte, U., Hengesbach, S., Traub, M., Strotkamp, M., Jungbluth, B. and Hoffmann, D. (2013). High Brightness Diode Laser Module in the Red Spectral Range for Pumping Applications. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 30–31.10.1109/HPD.2013.6706603 Search in Google Scholar

Xiao, B. (2017). Design and Implementation of Low Power Intelligent Fiber Energy Transmission System. Nanjing University of Posts and Telecommunications. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201801&filename=1017859792.nh&uniplatform=NZKPT&v=K4QceUFOQkJyequ4S32EhIA9Iy5qfHzrBmMM1Y2j6Y7FUiWnMWTto%25mmd2F365%25mmd2Fa9KXdS Search in Google Scholar

Yang, Y., Chen, G. and Guo, L. (2010). Study on I-V Characteristics of Three-junction GaAs Solar Cells. Semiconductor Technology, 35(5), pp. 423–426. Search in Google Scholar

Yao, Y. (2009). Study on Thermal Halo Effect of High Power Laser Propagation in Atmosphere. Xidian University. Search in Google Scholar

Yugami, H., Kanamor, Y., Arashi, H., Niino, M., Moro, A., Eguchi, K., Okada, Y. and Endo, A. (1997). Field Experiment of Laser Energy Transimission and Laser to Electric Conversion. Honolulu: Proceedings of the Intersociety Energy Conversion Engineering Conference, 1, pp. 625–630. Search in Google Scholar

Zhang, G. X., Chen, S., Xu, S. G., Luo, B. and Zhao, Y. M. (2010). Application and Research of Laser De-icing in Power System. 2010 IEEE International Power Modulator and High Voltage Conference, pp. 470–473.10.1109/IPMHVC.2010.5958396 Search in Google Scholar

Zhang, M. (2017). Experimental Study on Gamma Irradiation Effect of Double Cladding Ultraviolet Fiber. Atomic Energy Science and Technology, 51(3), pp. 536–542. Search in Google Scholar

Zhang, Q., Yun, F. and He, Q. (2020). Research on Space Radiation Damage Mechanism and Performance Improvement of Quartz Fiber. Fiber and Cable and Its Application Technology, 6, pp. 7–9. Search in Google Scholar

Zhang, Z., Lu, J. and Chi, W. (2003). Progress and Prospect of GaAs Solar Cell Technology. Shanghai Aerospace, 20(3), pp. 33–38. Search in Google Scholar

Zhao, X. (2007). Study on the Energy Transmission Characteristics of Fiber Laser with Peak Power. China Academy of Engineering Physics. Search in Google Scholar

Zhou, W. (2018). Research on Key Technology of Laser Radio Energy Transmission System. Nanjing University of Aeronautics and Astronautics. Search in Google Scholar

Zhou, W. and Jin, K. (2015a). Efficiency Evaluation of Laser Diode in Different Driving Modes for Wireless Power Transmission. IEEE Transactions on Power Electronics, 30(11), pp. 6237–6244.10.1109/TPEL.2015.2411279 Search in Google Scholar

Zhou, W. and Jin, K. (2015b). Efficiency Optimization Inject Current Characteristic of Laser Diode for Wireless Power Transmission. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3082–3086.10.1109/ECCE.2015.7310091 Search in Google Scholar

Zhuang, Y., Hua, L. and Guo, B. (2014). Research and Design of Laser Energy Converter for Laser Energy Transmission System. Infrared, 35(12), pp. 35–40. Search in Google Scholar

Zimer, H., Haas, M., Nagel, S., Ginter, M., Ried, S., Rauch, S., Killi, A. and Heinemann, S. (2015). Spectrally Stabilized and Combined Diode Lasers. 2015 IEEE High Power Diode Lasers and Systems Conference (HPD), pp. 31–32.10.1109/HPD.2015.7439680 Search in Google Scholar

Zimer, H., Ried, S., Tillkorn, C., Killi, A., Barnowski, T., An, H. and Schmidt, B. (2013). Beam Combining Technologies for Direct Diode Laser Systems at the kW Power Level. 2013 High Power Diode Lasers and Systems Conference (HPD), pp. 38–39.10.1109/HPD.2013.6706607 Search in Google Scholar

Zimmermann, S., Helmers, H., Tiwari, M. K., Paredes, S., Michel, B., Wiesenfarth, M., Bett, A. W. and Poulikakos, D. (2015). A High-Efficiency Hybrid High-Concentration Photovoltaic System. International Journal of Heat and Mass Transfer, 89, pp. 514–521.10.1016/j.ijheatmasstransfer.2015.04.068 Search in Google Scholar

Zotov, K. (2008a). Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications. IEEE Transactions on Nuclear Science, 55(4), pp. 2213–2215.10.1109/TNS.2008.2001834 Search in Google Scholar

Zotov, K. V., Likhachev, M. E., Tomashuk, A. L., Kosolapov, A. F., Bubnov, M. M., Yashkov, M. V., Guryanov, A. N. and Dianov, E. M. (2008b). Radiation Resistant Er-Doped Fibers: Optimization of Pump Wavelength. IEEE Photonics Technology Letters, 20(17), pp. 1476–1478.10.1109/LPT.2008.927909 Search in Google Scholar

eISSN:
2543-4292
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Informatik, Künstliche Intelligenz, Technik, Elektrotechnik, Elektronik