Uneingeschränkter Zugang

Relevance of Citrobacter species in urinary tract infections: a 10 year surveillance study


Zitieren

1. Wiedemann B, Heisig A, Heisig P. Uncomplicated urinary tract infections and antibiotic resistance-epidemiological and mechanistic aspects. Antibiotics 2014; 3: 341–352.10.3390/antibiotics3030341479037127025749Search in Google Scholar

2. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran, GJ, Nicolle LE, Raz R, Schaeffer AJ, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clinical Infectious Diseases 2011; 52: e103–e120.10.1093/cid/ciq25721292654Search in Google Scholar

3. Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayh PA, Tenke P et al. Diagnosis, Prevention, and Treatment of Catheter-Associated Urinary Tract Infection in Adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clinical Infectious Diseases 2010; 50: 625–663.10.1086/65048220175247Search in Google Scholar

4. Calzi A, Grignolo S, Caviglia I, Calevo MG, Losurdo G, Piaggio G, Bandettini R, Castagnola E. Resistance to oral antibiotics in 4569 Gram-negative rods isolated from urinary tract infection in children. European Joural of Pediatrics 2016; 175: 1219–1225.10.1007/s00431-016-2763-127558493Search in Google Scholar

5. Stefaniuk E, Suchocka U, Bosacka K, Hryniewicz W. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland. European Journal of Clinincal Microbiology and Infectious Diseases 2016; 35: 1363–1369.10.1007/s10096-016-2673-1494710627189078Search in Google Scholar

6. Penner J, Allerberger F, Dierich MP, Pfaller W, Hager J. In vitro experiments on catheter-related infections due to gram-negative rods. Chemotherapy 1993; 39: 336–35410.1159/0002391468370325Search in Google Scholar

7. Gajdács M, Bátori Z, Ábrók M, Lázár A, Burián K. Characterization of Resistance in Gram-Negative Urinary Isolates Using Existing and Novel Indicators of Clinical Relevance: A 10-Year Data Analysis. Life 2020; 10: e16.10.3390/life10020016717516332054054Search in Google Scholar

8. Cabral AB, Maciel MAV, Barros JF, Antunes MM, Barbosa de Castro CMM, Lopes ACS. Clonal spread and accumulation of β-lactam resistance determinants in Enterobacter aerogenes and Enterobacter cloacae complex isolates from infection and colonization in patients at a public hospital in Recife, Pernambuco, Brazilian Journal of Medical Microbiology 2017; 66: 70–77.Search in Google Scholar

9. Metri BC, Jyothi P, Peerapur BV. Antibiotic resistance in Citrobacter spp. isolated from urinary tract infection. Urology Annals 2013; 5: 312.10.4103/0974-7796.120295383599924311921Search in Google Scholar

10. Amaretti A, Righini L, Candeliere F, Musmeci E, Bonvicini F, Gentilomi GA, Rossi M, Raimondi S. Antibiotic Resistance, Virulence Factors, Phenotyping, and Genotyping of Non-Escherichia coli Enterobacterales from the Gut Microbiota of Healthy Subjects. International Journal of Molecular Sciences 2020; 21: e1847.10.3390/ijms21051847708437732156029Search in Google Scholar

11. Samonis G, Karageorgopoulos DE, Kofteridis DP, Matthaiou DK, Sidiropoulou V, Maraki S, Falagas ME. Citrobacter infections in a general hospital: Characteristics and outcomes. European Journal of Clinincal Microbiology and Infectious Diseases 2009; 28: 61–68.10.1007/s10096-008-0598-z18682995Search in Google Scholar

12. Al-Zarouni M, Senok A, Al-Zarooni N, Al-Nassay, F, Panigrahi D. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: In vitro susceptibility to fosfomycin, nitrofurantoin and tigecycline. Med. Princ. Pract. 2012; 21, 543–547.Search in Google Scholar

13. Takhar SS, Moran GJ. Diagnosis and management of urinary tract infection in the emergency department and outpatient settings. Infectious Diseases and Clinical Practice North America 2014; 28: 33–48.10.1016/j.idc.2013.10.00324484573Search in Google Scholar

14. Yang B, Yang F, Wang S, Wang Q, Liu Z, Feng W, Sun F, Xia P. Analysis of the spectrum and antibiotic resistance of uropathogens in outpatients a. tertiary hospital. Journal of Chemotherapy 2018; 30: 145–149.10.1080/1120009X.2017.141864629304717Search in Google Scholar

15. Morrissey I, Hackel M, Badal R, Bouchillon S, Hawser S, Biedenbach D. A Review of Ten Years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011. Pharmaceuticals 2013; 6, 1335–1346.10.3390/ph6111335385401424287460Search in Google Scholar

16. Leclercq R, Cantón R, Brown DFJ, Giske CG, Heisig P, MacGowan AP, Mouton JW, Nordmann P, Rodloff AC, Rossolini GM, et al. EUCAST expert rules in antimicrobial susceptibility testing. Clinical Microbiology and Infection 2013; 19, 141–160.10.1111/j.1469-0691.2011.03703.x22117544Search in Google Scholar

17. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, ampC-, and carbapenemase-producing enterobacteriaceae. Clinical Microbiology Reviews 2018; 31: e00079-17.10.1128/CMR.00079-17596768729444952Search in Google Scholar

18. Moy S, Sharma R. Treatment Outcomes in Infections Caused by “SPICE” (Serratia, Pseudomonas, Indole-positive Proteus, Citrobacter, and Enterobacter) Organisms: Carbapenem versus Noncarbapenem Regimens. Clinical Therapeutics 2017; 39: 170-176.10.1016/j.clinthera.2016.11.02528034519Search in Google Scholar

19. Gajdács M. The concept of an ideal antibiotics: implications for drug design. Molecules 2019; 24: e892.10.3390/molecules24050892642933630832456Search in Google Scholar

20. Gajdács M, Ábrók M, Lázár A, Burián K. [Susceptibility patterns of extended-spectrum beta-lactamase-producing (ESBL) urinary pathogens: single-center experience] (article in Hungarian). Gyógyszerészet 2019; 63: 405-411.Search in Google Scholar

21. Gajdács M, Burián K, Terhes G. Resistance Levels and Epidemiology of Non-Fermenting Gram-Negative Bacteria in Urinary Tract Infections of Inpatients and Outpatients (RENFUTI): A 10-Year Epidemiological Snapshot. Antibiotics 2019; 8: e143.10.3390/antibiotics8030143678425631505817Search in Google Scholar

22. Gajdács M, Ábrók M, Lázár A, Burián K. Comparative Epidemiology and Resistance Trends of Common Urinary Pathogens in a Tertiary-Care Hospital: A 10-Year Surveillance Study. Medicina 2019; 55: e356.10.3390/medicina55070356668121431324035Search in Google Scholar

23. Gajdács M, Paulik E, Szabó A. [The opinions of community pharmacists related to antibiotic use and resistance] (In Hungarian). Acta Pharmaceutica Hungarica 2018; 88: 249–252.Search in Google Scholar

24. Denes E, Prouzergue J, Ducroix-Roubertou S, Aupetit C, Weinbreck, P. Antibiotic prescription by general practitioners for urinary tract infections in outpatients. European Journal of Clinical Microbiology and Infectious Diseases 2012; 31: 3079–3083.10.1007/s10096-012-1668-922722765Search in Google Scholar

25. Doi Y, Bonomo RA, Hooper DC, Kaye KS, Johnson JR, Clancy CJ, Thaden JT, Stryjewski ME, van Duin D. Gram-Negative Committee of the Antibacterial Resistance Leadership Group (ARLG) a Gram-Negative Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group. Clinical Infectious Diseases 2017; 64: S30–S35.10.1093/cid/ciw829Search in Google Scholar

26. Issakhanian L, Behzadi P. Antimicrobial Agents and Urinary Tract Infections. Current Pharmaceutical Design 2019; 25: 1409-1423.10.2174/1381612825999190619130216Search in Google Scholar

27. Gajdács M. Epidemiology of Raoultella species in the context of human infections: A 10-year retrospective study in a tertiary-care hospital in Hungary. Trends in Medicine 2019; 20: e217.10.15761/TiM.1000217Search in Google Scholar

28. Mathai D, Jones RN, Pfaller MA, SENTRY Participant Group North America. Epidemiology and frequency of resistance among pathogens causing urinary tract infections in 1,510 hospitalized patients: a report from the SENTRY Antimicrobial Surveillance Program (North America). Diagnostic Microbiology and Infectious Diseases 2001; 40: 129-136.10.1016/S0732-8893(01)00254-1Search in Google Scholar

29. Felmingham D, White AR, Jacobs MR, Appelbaum PC, Poupard J, Miller LA, Grüneberg RN. The Alexander Project: the benefits from a decade of surveillance. Journal of Antimicrobial Chemotherapy 2005; 56:ii3–ii21.10.1093/jac/dki29716282278Search in Google Scholar

30. Gajdács M, Urbán E. Comparative Epidemiology and Resistance Trends of Proteae in Urinary Tract Infections of Inpatients and Outpatients: A 10-Year Retrospective Study. Antibiotics 2019; 11: e91.10.3390/antibiotics8030091678386231373311Search in Google Scholar

31. Giske CG. Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clinical Microbiology and Infection 2015; 21: 899–905.10.1016/j.cmi.2015.05.02226027916Search in Google Scholar

32. Beuk C, Hill C, Whitehead S, Blondel-Hill E, Wagner K, Cheeptham N. Determination of susceptibility to fosfomycin and tigecycline of Enterobacteriaceae, particularly Escherichia coli isolates, producing extended-spectrum β-lactamases from multiple regional Canadian hospitals. Canadian Journal of Infectious Diseases and Medical Microbiology 2013; 24: e80–e82.10.1155/2013/645018385246324421836Search in Google Scholar

33. Cantón R, González-Alba JM, Galán JC. CTX-M Enzymes: Origin and Diffusion. Frontiers in Microbiology 2012; 3: e110.10.3389/fmicb.2012.00110331699322485109Search in Google Scholar

34. Kong KF, Schneper L, Mathee K. Beta-lactam Antibiotics: From Antibiosis to Resistance and Bacteriology. APMIS 2010; 118: 1–36.10.1111/j.1600-0463.2009.02563.x289481220041868Search in Google Scholar

eISSN:
2537-5059
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere, Medizin, Klinische Medizin, Pharmazie