1. bookVolumen 30 (2022): Heft 1 (June 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2061-9588
Erstveröffentlichung
08 Oct 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Trends of avian locomotion in water – an overview of swimming styles

Online veröffentlicht: 30 Jun 2022
Volumen & Heft: Volumen 30 (2022) - Heft 1 (June 2022)
Seitenbereich: 30 - 46
Eingereicht: 19 Apr 2022
Akzeptiert: 14 May 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2061-9588
Erstveröffentlichung
08 Oct 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Abstract

Adaptation to an aquatic lifestyle occurred in the evolution of several primarily terrestrial clades of tetrapods. Among these lineages, aquatic birds’ adaptations differ in many ways from other secondarily aquatic vertebrates. As a consequence of the evolution of flight, birds with swimming and diving abilities represent unique locomotion skills and complex anatomical solutions. Here we attempt to overview some of the main aspects of avian locomotion in water and highlight the diversity of their aquatic habits and locomotion types, with the best-known extinct and extant examples. The main features that can distinguish the different groups among these swimmers and divers are their different techniques to overcome buoyancy, the transformation of wings or hind limbs into aquatic propulsive organs, and their swimming techniques besides the presence or absence of the flying and/or terrestrial abilities. Understanding how the musculoskeletal system of aquatic birds evolved to face the requirements of moving in various environments with different physical characteristics provides a good opportunity to get a better view of convergent and divergent evolution.

Ancel, A., Starke, L. N., Ponganis, P. J., Van Dam, R. & Kooyman, G. L. 2000. Energetics of surface swimming in Brandt’s Cormorants (Phalacrocorax penicillatus Brandt). – Journal of Experimental Biology 203: 3727–3731. DOI: 10.1242/jeb.203.24.372711076736DOI öffnenSearch in Google Scholar

Ashmole, N. P., Farner, D. S. & King, J. R. 1971. Seabird ecology and the marine environment. – In: Farner, D. S., King, J. S. & Parkes, K. C. (eds.) Avian Biology, Vol. I. – Academic Press, New YorkSearch in Google Scholar

Audubon, J. J. 1838. An Ornithological Biography, Vol. 4: 136–160. – Adam and Charles Black, EdinburghSearch in Google Scholar

Bardet, N. 1994. Extinction events among Mesozoic marine reptiles. – Historical Biology 7(4): 313–324. DOI: 10.1080/10292389409380462DOI öffnenSearch in Google Scholar

Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., Pérez-García, A., Rage, J-C. & Vincent, P. 2014. Mesozoic marine reptile palaeobiogeography in response to drifting plates. – Gondwana Research 26(3–4): 869–887. DOI: 10.1016/j.gr.2014.05.005DOI öffnenSearch in Google Scholar

Bell, A. & Chiappe, L. M. 2016. A species-level phylogeny of the Cretaceous Hesperornithiformes (Aves: Ornithuromorpha): implications for body size evolution amongst the earliest diving birds. – Journal of Systematic Palaeontology 14(3): 239–251. DOI: 10.1080/14772019.2015.1036141DOI öffnenSearch in Google Scholar

Bell, A., Wu, Y. H. & Chiappe, L. M. 2019. Morphometric comparison of the Hesperornithiformes and modern diving birds. – Palaeogeography, Palaeoclimatology, Palaeoecology 513: 196–207. DOI: 10.1016/j.palaeo.2017.12.010DOI öffnenSearch in Google Scholar

Bovy, K. M. 2002. Differential avian skeletal part distribution: explaining the abundance of wings. – Journal of archaeological Science 29(9): 965–978. DOI: 10.1006/jasc.2001.0795DOI öffnenSearch in Google Scholar

Bribiesca-Contreras, F., Parslew, B. & Sellers, W. I. 2021. Functional morphology of the forelimb musculature reflects flight and foraging styles in aquatic birds. – Journal of Ornithology 162: 779–793. DOI: 10.1007/s10336-021-01868-yDOI öffnenSearch in Google Scholar

Brooks, A. 1945. The under-water actions of diving ducks. – The Auk 62(4): 517–523.10.2307/4079802Search in Google Scholar

Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. 2015. The origin and diversification of birds. – Current Biology 25(19): R888-R898. DOI: 10.1016/j.cub.2015.08.00326439352DOI öffnenSearch in Google Scholar

Butler, P. J. 2000. Energetic costs of surface swimming and diving of birds. – Physiological and Biochemical Zoology 73(6): 699–705. DOI: 10.1086/31811111121344DOI öffnenSearch in Google Scholar

Cerda, I. A., Tambussi, C. P. & Degrange, F. J. 2015. Unexpected microanatomical variation among Eocene Antarctic stem penguins (Aves: Sphenisciformes). – Historical Biology 27: 549–557. DOI: 10.1080/08912963.2014.896907DOI öffnenSearch in Google Scholar

Chang, B., Croson, M., Straker, L., Gart, S., Dove, C., Gerwin, J. & Jung, S. 2016. How seabirds plunge-dive without injuries. – Proceedings of the National Academy of Sciences 113(43): 12006–12011. DOI: 10.1073/pnas.1608628113DOI öffnenSearch in Google Scholar

Chiappe, L. M. & Witmer, L. M. (eds.) 2002. Mesozoic Birds: Above the Heads of Dinosaurs. – University of California Press, Berkeley, CaliforniaSearch in Google Scholar

Chinsamy, A., Martin, L. D. & Dodson, P. 1998. Bone microstructure of the diving Hesperornis and the volant Ichthyornis from the Niobrara Chalk of western Kansas. – Cretaceous Research 19(2): 225–235. DOI: 10.1016/0195-6671(83)90023-XDOI öffnenSearch in Google Scholar

Clark, B. D. & Bemis, W. 1979. Kinematics of swimming of penguins at the Detroit Zoo. – Journal of Zoology 188(3): 411–428. DOI: 10.1111/j.1469-7998.1979.tb03424.xDOI öffnenSearch in Google Scholar

Clifton, G. T. & Biewener, A. A. 2018. Foot-propelled swimming kinematics and turning strategies in Common Loons. – Journal of Experimental Biology jeb.168831. DOI: 10.1242/jeb.16883130127080DOI öffnenSearch in Google Scholar

Clifton, G. T., Carr, J. A. & Biewener, A. A. 2018. Comparative hindlimb myology of foot-propelled swimming birds. – Journal of Anatomy 232(1): 105–123. DOI: 10.1111/joa.12710573504729098684DOI öffnenSearch in Google Scholar

Diederle, J. M. 2017. Body mass and locomotor habits of the smallest darter, Anhinga minuta (Aves, Anhingidae). – Historical Biology 29(3): 289–295. DOI: 10.1080/08912963.2016.1148148DOI öffnenSearch in Google Scholar

Dyke, G. J., Wang, X. & Habib, M. B. 2011. Fossil plotopterid seabirds from the Eo-Oligocene of the Olympic Peninsula (Washington State, USA): Descriptions and functional morphology. – PLoS ONE 6(10): e25672. DOI: 10.1371/journal.pone.0025672320496922065992DOI öffnenSearch in Google Scholar

Eliason, C. M., Straker, L., Jung, S. & Hackett, S. J. 2020. Morphological innovation and biomechanical diversity in plunge-diving birds. – Evolution 74(7): 1514–1524. DOI: 10.1111/evo.1402432452015DOI öffnenSearch in Google Scholar

Enstipp, M. R., Descamps, S., Fort, J. & Grémillet, D. 2018. Almost like a whale – First evidence of suction feeding in a seabird. – Journal of Experimental Biology 221(13): jeb.182170. DOI: 10.1242/jeb.18217029844199DOI öffnenSearch in Google Scholar

Fernández, M. S., Vlachos, E., Buono, M. R., Alzugaray, L., Campos, L., Sterli, J., Herrera, Y. & Paolucci, F. 2020. Fingers zipped up or baby mittens? Two main tetrapod strategies to return to the sea. – Biology Letters 16: 20200281. DOI: 10.1098/rsbl.2020.0281748014532750267DOI öffnenSearch in Google Scholar

Fish, F. E. 2016. Secondary evolution of aquatic propulsion in higher vertebrates: Validation and prospect. – Integrative and Comparative Biology 56(6): 1285–1297. DOI: 10.1093/icb/icw12327697779DOI öffnenSearch in Google Scholar

Fuller, E. 1999. The Great Auk. The Extinction of the Original Penguin. – Bunker Hill PublishingSearch in Google Scholar

Fulton, T. L., Letts, B. & Shapiro, B. 2012. Multiple losses of flight and recent speciation in steamer ducks. – Proceedings of the Royal Society B: Biological Sciences 279(1737): 2339–2346. DOI: 10.1098/rspb.2011.2599335067422319122DOI öffnenSearch in Google Scholar

Galton, P. M. & Martin, L. D. 2002. Enaliornis, an Early Cretaceous Hesperornithiform bird from England, with comments on other Hesperornithiformes. – In: Chiappe, L. M. & Witmer, L. M. (eds.) Mesozoic Birds: Above the Heads of Dinosaurs. – University of California Press, Berkeley, California, pp. 228–317.Search in Google Scholar

García–R, J. C., Gibb, G. C. & Trewick, S. A. 2014. Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae). – PLoS ONE 9(10):e109635. DOI: 10.1371/journal.pone.0109635418872525291147DOI öffnenSearch in Google Scholar

Gatesy, S. M. & Dial, K. P. 1996. Locomotor modules and the evolution of avian flight. – Evolution 50(1): 331–340. DOI: 10.1111/j.1558-5646.1996.tb04496.x28568886DOI öffnenSearch in Google Scholar

Goodge, W. R. 1959. Locomotion and other behavior of the Dipper. – The Condor 61(1): 4–17.10.2307/1365341Search in Google Scholar

Gough, W., Farina, S. C. & Fish, F. E. 2015. Aquatic burst locomotion by hydroplaning and paddling in Common Eiders (Somateria mollissima). – Journal of Experimental Biology 218: 1632–1638. DOI: 10.1242/jeb.11414025852065DOI öffnenSearch in Google Scholar

Grémillet, D., Chauvin, C., Wilson, R. P., Le Maho, Y. & Wanless, S. 2005. Unusual feather structure allows partial plumage wettability in diving Great Cormorants Phalacrocorax carbo. – Journal of Avian Biology 36: 57–63. DOI: 10.1111/j.0908-8857.2005.03331.xDOI öffnenSearch in Google Scholar

Gutarra, S. & Rahman, I. A. 2022. The locomotion of extinct secondarily aquatic tetrapods. – Biological Reviews 97(1): 67–98. DOI: 10.1111/brv.1279034486794DOI öffnenSearch in Google Scholar

Habib, M. B. & Ruff, C. B. 2008. The effects of locomotion on the structural characteristics of avian limb bones. – Zoological Journal of the Linnean Society 153(3): 601–624. DOI: 10.1111/j.1096-3642.2008.00402.xDOI öffnenSearch in Google Scholar

Habib, M. 2010. The structural mechanics and evolution of aquaflying birds: Mechanics of aquaflying birds. – Biological Journal of the Linnean Society 99(4): 687–698. DOI: 10.1111/j.1095-8312.2010.01372.xDOI öffnenSearch in Google Scholar

Habib, M. B. & Ruff, C. B. 2008. The effects of locomotion on the structural characteristics of avian limb bones. – Zoological Journal of the Linnean Society 153(3): 601–624. DOI: 10.1111/j.1096-3642.2008.00402.xDOI öffnenSearch in Google Scholar

Heers, A. M. & Dial, K. P. 2012. From extant to extinct: locomotor ontogeny and the evolution of avian flight. – Trends in Ecology & Evolution 27(5): 296–305. DOI: 10.1016/j.tree.2011.12.00322304966DOI öffnenSearch in Google Scholar

Hinić-Frlog, S. & Motani, R. 2010. Relationship between osteology and aquatic locomotion in birds: determining modes of locomotion in extinct Ornithurae. – Journal of Evolutionary Biology 23(2): 372–385. DOI: 10.1111/j.1420-9101.2009.01909.x20021550DOI öffnenSearch in Google Scholar

Houssaye, A. & Fish, F. E. 2016. Functional (secondary) adaptation to an aquatic life in Vertebrates: An introduction to the symposium. – Integrative and Comparative Biology 56(6): 1266–1270. DOI: 10.1093/icb/icw12927940617DOI öffnenSearch in Google Scholar

Houssaye, A., Martin Sander, P. & Klein, N. 2016. Adaptive patterns in aquatic amniote bone microanatomy – more complex than previously thought. – Integrative and Comparative Biology 56(6): 1349–1369. DOI: 10.1093/icb/icw12027794536DOI öffnenSearch in Google Scholar

Hustler, K. 1992. Buoyancy and its constraints on the underwater foraging behaviour of Reed Cormorants Phalacrocorax africanus and Darters Anhinga melanogaster. – Ibis 134(3): 229–236. DOI: 10.1111/j.1474-919X.1992.tb03804.xDOI öffnenSearch in Google Scholar

Jadwiszczak, P. 2009. Penguin past: The current state of knowledge. – Polish Polar Research 26(1): 3–28.Search in Google Scholar

Johansson, L. C. & Norberg, R. Å. 2003. Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds. – Nature 424(6944): 65–68. DOI: 10.1038/nature0169512840759DOI öffnenSearch in Google Scholar

Johansson, L. C. & Lindhe Norberg, U. M. 2001. Lift-based paddling in diving grebe. – Journal of Experimental Biology 204(10): 1687–1696. DOI: 10.1242/jeb.204.10.168711316488DOI öffnenSearch in Google Scholar

Johansson, L. C. & Aldrin, B. S. W. 2002. Kinematics of diving Atlantic Puffins (Fratercula arctica L.): evidence for an active upstroke. – Journal of Experimental Biology 205(3): 371–378. DOI: 10.1242/jeb.205.3.37111854373DOI öffnenSearch in Google Scholar

Johnsgard, P. A. 1978. Ducks, geese, and swans of the world. – University of Nebraska Press, 1st ed., Lincoln, NebraskaSearch in Google Scholar

Johnsgard, P. A. 1987. Diving Birds of North America: 1 General Attributes and Evolutionary Relationships. – DigitalCommons@University of Nebraska, LincolnSearch in Google Scholar

Kaiser, G. 2011. 15 Functional and Phylogenetic Diversity in Marine and Aquatic Birds. – Living Dinosaurs: The Evolutionary History of Modern Birds. – Wiley-Blackwell, New Jersey10.1002/9781119990475.ch15Search in Google Scholar

Kato, A., Ropert-Coudert, Y., Grémillet, D. & Cannell, B. 2006. Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. – Marine Ecology Progress Series 308(3): 293–301. DOI: 10.3354/meps308293DOI öffnenSearch in Google Scholar

Kelley, N. P. & Pyenson, N. D. 2015. Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. – Science 348: aaa3716. DOI: 10.1126/science.aaa3716DOI öffnenSearch in Google Scholar

Kelso, J. E. H. 1922. Birds using their wings as a means of propulsion under water. – The Auk 39(3): 426–428. DOI: 10.2307/4073466DOI öffnenSearch in Google Scholar

Konyukhov, N. B. 2002. Possible ways of spreading and evolution of Alcids. – Biology Bulletin of the Russian Academy of Sciences 29(5): 447–454.10.1023/A:1020457508769Search in Google Scholar

Kovacs, C. E. & Meyers, R. A. 2000. Anatomy and histochemistry of flight muscles in a wing-propelled diving bird, the Atlantic Puffin, Fratercula arctica. – Journal of Morphology 244(2): 109–125. DOI: 10.1002/(SICI)1097-4687(200005)244:2<109::AID-JMOR2>3.0.CO;2-0DOI öffnenSearch in Google Scholar

Kristoffersen, A. V. 2001. Adaptive specialization to life in water through the evolutionary history of birds. – In: Mazin, J. M. & De Buddfrenil, V. (eds.) Secondary Adaptation of Tetrapods to Life in Water. – Verlag Dr. Friedrich Pfeil, München, pp. 141–150.Search in Google Scholar

Ksepka, D. T. & Ando, T. 2011. Penguins past, present, and future: Trends in the evolution of the Sphenisciformes. – In: Dyke, G. & Kaiser, G. (eds.) Living Dinosaurs. – John Wiley & Sons Ltd, Chichester, UK, pp. 155–186. DOI: 10.1002/9781119990475.ch6DOI öffnenSearch in Google Scholar

Kurochkin, E. N. 1976. A survey of the Paleogene birds of Asia. – Smithsonian Contributions to Paleobiology 27(1): 75–86.Search in Google Scholar

Corre, M. L. 1997. Diving depths of two tropical Pelecaniformes: the Red-tailed Tropicbird and the Red-footed Booby. – The Condor 99(4): 1004–1007.10.2307/1370157Search in Google Scholar

Lee, D. N. & Reddish, P. E. 1981. Plummeting gannets: A paradigm of ecological optics. – Nature 293(5830): 293–294.10.1038/293293a0Search in Google Scholar

Lindgren, J., Caldwell, M. W., Konishi, T. & Chiappe, L. M. 2010. Convergent evolution in aquatic tetrapods: Insights from an exceptional fossil mosasaur. – PLoS ONE 5(8): e11998. DOI: 10.1371/journal.pone.0011998DOI öffnenSearch in Google Scholar

Livezey, B. C. & Humphrey, P. S. 1982. Escape behaviour of steamer ducks. – Wildfowl 33: 12–16.Search in Google Scholar

Livezey, B. C. & Humphrey, P. S. 1984. Diving behaviour of steamer ducks Tachyeres spp. – Ibis 126(2): 257–260. DOI: 10.1111/j.1474-919X.1984.tb08006.xDOI öffnenSearch in Google Scholar

Livezey, B. C. & Humphrey, P. S. 1986. Flightlessness in steamer-ducks (Anatidae: Tachyeres): its morphological bases and probable evolution. – Evolution 40(3): 540–558.Search in Google Scholar

Livezey, B. C. 1989. Flightlessness in grebes (Aves, Podicipedidae): its independent evolution in three genera. – Evolution 43(1): 29–54. DOI: 10.1111/j.1558-5646.1989.tb04205.x28568486DOI öffnenSearch in Google Scholar

Louw, G. J. 1992. Functional anatomy of the penguin flipper. – Journal of the South African Veterinary Association 63(3): 113–120.Search in Google Scholar

Lovvorn, J. R., Liggins, G. A., Borstad, M. H., Calisal, S. M. & Mikkelsen, J. 2001. Hydrodynamic drag of diving birds: effects of body size, body shape and feathers at steady speeds. – Experimental Biology 204(9): 1547–1557. DOI: 10.1242/jeb.204.9.154711398745DOI öffnenSearch in Google Scholar

Lovvorn, J. R. & Liggins, G. A. 2002. Interactions of body shape, body size and stroke-acceleration patterns in costs of underwater swimming by birds: Shape, size and stroke acceleration in diving birds. – Functional Ecology 16(1): 106–112. DOI: 10.1046/j.0269-8463.2001.00604.xDOI öffnenSearch in Google Scholar

Low, K. H., Hu, T., Mohammed, S., Tangorra, J. & Kovac, M. 2015. Perspectives on biologically inspired hybrid and multi-modal locomotion. – Bioinspiration & Biomimetics 10(2): 020301. DOI: 10.1088/1748-3190/10/2/02030125807582DOI öffnenSearch in Google Scholar

Marsh, O. C. 1880. Odontornithes: a Monograph on the Extinct Toothed Birds of North America: With Thirty-four Plates and Forty Woodcuts (Vol. 18). – US Government Printing Office10.5962/bhl.title.61298Search in Google Scholar

Martin, L. D. & Tate, J. Jr. 1976. The skeleton of Baptornis advenus (Aves: Hesperornithiformes). – Smithsonian Contributions to Paleobiology 27(1): 35–66.Search in Google Scholar

Mayr, G. 2004. A partial skeleton of a new fossil loon (Aves, Gaviiformes) from the early Oligocene of Germany with preserved stomach content. – Journal of Ornithology 145(4): 281–286. DOI: 10.1007/s10336-004-0050-9DOI öffnenSearch in Google Scholar

Mayr, G., Goedert, J. L., De Pietri, V. L. & Scofield, R. P. 2021. Comparative osteology of the penguin-like mid-Cenozoic Plotopteridae and the earliest true fossil penguins, with comments on the origins of wing-propelled diving. – Journal of Zoological Systematics and Evolutionary Research 59(1): 264–276. DOI: 10.1111/jzs.12400DOI öffnenSearch in Google Scholar

Mendoza, R. S. D. & Tambussi, C. P. 2015. Osteosclerosis in the extinct Cayaoa bruneti (Aves, Anseriformes): Insights on Behavior and Flightlessness. – Ameghiniana 52(3): 305–313. DOI: 10.5710/AMGH.28.02.2015.2843DOI öffnenSearch in Google Scholar

Moen, D. & Morlon, H. 2014. From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation. – PLoS Biology 12(5): e1001854. DOI: 10.1371/journal.pbio.1001854401167324802950DOI öffnenSearch in Google Scholar

Motani, R. & Vermeij, G. J. 2021. Ecophysiological steps of marine adaptation in extant and extinct non-avian tetrapods. – Biological Reviews 96(5): 1769–1798. DOI: 10.1111/brv.1272433904243DOI öffnenSearch in Google Scholar

Norberg, R. Å. & Norberg, U. M. 1971. Take-off, landing, and flight speed during fishing flights of Gavia stellata (Pont.). – Ornis Scandinavica 2(1): 55–67.10.2307/3676239Search in Google Scholar

Nurza, A., Husnurrizal, H. & Iqbal, M. 2017. Recent record of Masked Finfoot (Heliopais personata) in Indonesia after 17 years. – International Journal of Bonorowo Wetlands 7(1): 8–10. DOI: 10.13057/bonorowo/w070103DOI öffnenSearch in Google Scholar

Olson, S. L. 2003. First fossil record of a finfoot (Aves: Heliornithidae) and its biogeographical significance. – Proceedings of the Biological Society of Washington 116(3): 732–736.Search in Google Scholar

Ostrom, J. 1976. Some hypothetical anatomical stages in the evolution of avian flight. – Smithsonian Contributions to Paleobiology 27(1): 1–21.Search in Google Scholar

Owre, O. T. 1967. Adaptations for locomotion and feeding in the Anhinga and the Double-crested Cormorant. – Ornithological Monographs 6: 1–138. DOI: 10.2307/40166666DOI öffnenSearch in Google Scholar

Pecsics, T., Laczi, M., Nagy, G. & Csörgő, T. 2017. The cranial morphometrics of the wildfowl (Anatidae). – Ornis Hungarica 25(1): 44–57. DOI: 10.1515/orhu-2017-0004DOI öffnenSearch in Google Scholar

Pöysä, H. 1983. Morphology-mediated niche organization in a guild of dabbling ducks. – Ornis Scandinavica 14(4): 317–326. DOI: 10.2307/3676325DOI öffnenSearch in Google Scholar

Pöysä, H. 1983. Resource utilization pattern and guild structure in a waterfowl community. – Oikos 40(2): 295–307. DOI: 10.2307/3544594DOI öffnenSearch in Google Scholar

Provini, P., Goupil, P., Hugel, V. & Abourachid, A. 2012. Walking, Paddling, Waddling: 3 D Kinematics Anatidae Locomotion (Callonetta leucophrys). – Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 317(5): 275–282. DOI: 10.1002/jez.172122511325DOI öffnenSearch in Google Scholar

Raikow, R. J., Bicanovsky, L. & Bledsoe, A. H. 1988. Forelimb joint mobility and the evolution of wing-propelled diving in birds. – The Auk 105(3): 446–451. DOI: 10.1093/auk/105.3.446DOI öffnenSearch in Google Scholar

Ribak, G., Swallow, J. G. & Jones, D. R. 2010. Drag-based ‘hovering’ in ducks: The hydrodynamics and energetic cost of bottom feeding. – PLoS ONE 5(9): e12565. DOI: 10.1371/journal.pone.0012565293536020830286DOI öffnenSearch in Google Scholar

Ribak, G., Weihs, D. & Arad, Z. 2005. Submerged swimming of the Great Cormorant Phalacrocorax carbo sinensis is a variant of the burst-and-glide gait. – Journal of Experimental Biology 208(20): 3835–3849. DOI: 10.1242/jeb.0185616215212DOI öffnenSearch in Google Scholar

Ryan, P. G. & Nel, D. C. 1999. Foraging behaviour of diving petrels Pelecanoides. – Emu – Austral Ornithology 99(1): 72–74. DOI: 10.1071/MU99009BDOI öffnenSearch in Google Scholar

Ryan, P. G. 2007. Diving in shallow water: the foraging ecology of darters (Aves: Anhingidae). – Journal of Avian Biology 38(4): 507–514. DOI: 10.1111/j.0908-8857.2007.04070.xDOI öffnenSearch in Google Scholar

Schmid, D., Grémillet, D. J. H. & Culik, B. M. 1995. Energetics of underwater swimming in the Great Cormorant (Phalacrocorax carbo sinensis). – Marine Biology 123(4): 875–881. DOI: 10.1007/BF00349133DOI öffnenSearch in Google Scholar

Schreiweis, D. O. 1982. A comparative study of the appendicular musculature of penguins (Aves, Sphenisciformes). – Smithsonian Contributions to Zoology 23(1): 1–46. DOI: 10.5479/si.00810282.341DOI öffnenSearch in Google Scholar

Serrano, F. J., Costa-Pérez, M., Navalón, G. & Martín-Serra, A. 2020. Morphological disparity of the humerus in modern birds. – Diversity 12(5): 173. DOI: 10.3390/d12050173DOI öffnenSearch in Google Scholar

Sharker, S. I., Holekamp, S., Mansoor, M. M., Fish, F. E. & Truscott, T. T. 2019. Water entry impact dynamics of diving birds. – Bioinspiration & Biomimetics 14(5): 056013. DOI: 10.1088/1748-3190DOI öffnenSearch in Google Scholar

Shepherd, C. R. 2006. Some recent behavioural observations of Masked Finfoot Heliopais personata (Gray 1849) in Selangor Darul Ehsan, Peninsular Malaysia. – BirdingASIA 5(1): 69–71.Search in Google Scholar

Shufeldt, R. W. 1898. III.-On the Terrestrial Attitudes of Loons and Grebes. – Ibis 40(1): 46–51. DOI: 10.1111/j.1474-919X.1898.tb05505.xDOI öffnenSearch in Google Scholar

Shufeldt, R. W. 1915. Comparative osteology of Harris’s Flightless Cormorant (Nannopterum harrisi). – Emu – Austral Ornithology 15(2): 86–114. DOI: 10.1071MU915086DOI öffnenSearch in Google Scholar

Smith, N. A. 2011. Taxonomic revision and phylogenetic analysis of the flightless Mancallinae (Aves, Pan-Alcidae). – ZooKeys 4(91): 1. DOI: 10.3897/zookeys.91.709308449321594108DOI öffnenSearch in Google Scholar

Smith, N. A. & Clarke, J. A. 2015. Systematics and evolution of the Pan-Alcidae (Aves, Charadriiformes). – Journal of Avian Biology 46(2): 125–140. DOI: 10.1111/jav.00487DOI öffnenSearch in Google Scholar

Smith, N. A., Koeller, K. L., Clarke, J. A., Ksepka, D. T., Mitchell, J. S., Nabavizadeh, A., Ridgley, R. C. & Witmer, L. M. 2021. Convergent evolution in dippers (Aves, Cinclidae): The only wing-propelled diving songbirds. – The Anatomical Record 24820. DOI: 10.1002/ar.24820929889734813153DOI öffnenSearch in Google Scholar

Snell, R. R. 1985. Underwater flight of Long-tailed Duck (Oldsquaw) Clangula hyemalis. – Ibis 127: 267.10.1111/j.1474-919X.1985.tb05063.xSearch in Google Scholar

Spring, L. 1971. A comparison of functional and morphological adaptations in the Common Murre (Uria aalge) and Thick-billed Murre (Uria lomvia). – The Condor 73(1): 1–27.10.2307/1366120Search in Google Scholar

Stolpe, M. 1932. Physiologisch-anatomische Untersuchungen über die hintere Extremität der Vögel [Physiological-anatomical studies of the hind limbs of birds]. – Journal für Ornithologie 80(2): 161–247. (in German)10.1007/BF01908701Search in Google Scholar

Storer, R. W. 1945. Structural modifications in the hind limb in the Alcidae. – Ibis 87(3): 433–456. DOI: 10.1111/j.1474-919X.1945.tb01375.xDOI öffnenSearch in Google Scholar

Storer, R. W. 1956. The fossil loon, Colymboides minutus. – The Condor 58(6): 413–426.10.2307/1365096Search in Google Scholar

Tokita, M., Matsushita, H. & Asakura, Y. 2020. Developmental mechanisms underlying webbed foot morphological diversity in waterbirds. – Scientific Reports 10(1): 1–11. DOI: 10.2307/4070795DOI öffnenSearch in Google Scholar

Tome, M. W. & Wrubleski, D. A. 1988. Underwater foraging behavior of Canvasbacks, Lesser Scaups, and Ruddy Ducks. – The Condor 90(1): 168–172. DOI: 10.2307/1368445DOI öffnenSearch in Google Scholar

Townsend, C. W. 1909. The use of the wings and feet by diving birds. – The Auk 26(3): 234–248. DOI: 10.2307/4070795DOI öffnenSearch in Google Scholar

Townsend, C. W. 1909. The use of the wings and feet by diving birds. – The Auk 26(3): 234–248.10.2307/4070795Search in Google Scholar

Uhen, M. D. 2007. Evolution of marine mammals: Back to the sea after 300 million years. – The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary Biology 290(6): 514–522. DOI: 10.1002/ar.2054517516441DOI öffnenSearch in Google Scholar

Vermeij, G. J. & Motani, R. 2018. Land to sea transitions in vertebrates: the dynamics of colonization. – Paleobiology 44(2): 237–250. DOI: 10.1017/pab.2017.37DOI öffnenSearch in Google Scholar

Watanabe, J., Field, D. J. & Matsuoka, H. 2021. Wing musculature reconstruction in extinct flightless auks (Pinguinus and Mancalla) reveals incomplete convergence with penguins (Spheniscidae) due to differing ancestral states. – Integrative Organismal Biology 3(1): obaa040. DOI: 10.1093/iob/obaa040827122034258512DOI öffnenSearch in Google Scholar

Weiss, T. 2014. Gaining Intuition for Diving Birds: Wedges and Cones as a Model for Beak-Water Impact. – Report Virginia Polytechnic InstituteSearch in Google Scholar

White, H. C. 1957. Food and natural history of mergansers on salmon waters in the Maritime Provinces of Canada. – Fishery Research Board of Canada Bulletin 116(7): 63.Search in Google Scholar

White, C. R., Martin, G. R. & Butler, P. J. 2008. Pedestrian locomotion energetics and gait characteristics of a diving bird, the Great Cormorant, Phalacrocorax carbo. – Journal of Comparative Physiology 178(6): 745–754. DOI: 10.1007/s00360-008-0265-918575869DOI öffnenSearch in Google Scholar

Willener, A. S. T., Handrich, Y., Halsey, L. G. & Strike, S. 2016. Fat King Penguins are less steady on their feet. – PLoS ONE 11(2): e0147784. DOI: 10.1371/journal.pone.0147784475703326886216DOI öffnenSearch in Google Scholar

Wilson, L. E. & Chin, K. 2014. Comparative osteohistology of Hesperornis with reference to pygoscelid penguins: the effects of climate and behaviour on avian bone microstructure. – Royal Society Open Science 1(3): 140245. DOI: 10.1098/rsos.140245444885026064560DOI öffnenSearch in Google Scholar

Zeffer, A., Johansson, L. C. & Marmebro, Å. 2003. Functional correlation between habitat use and leg morphology in birds (Aves): Habitat and leg morphology in birds (Aves). – Biological Journal of the Linnean Society 79(3): 461–484. DOI: 10.1046/j.1095-8312.2003.00200.xDOI öffnenSearch in Google Scholar

Zeffer, A. & Norberg, U. M. L. 2003. Leg morphology and locomotion in birds: requirements for force and speed during ankle flexion. – Journal of Experimental Biology 206(6): 1085–1097. DOI: 10.1242/jeb.0020812582150DOI öffnenSearch in Google Scholar

Zelenkov, N. V. 2015. A primitive grebe (Aves, Podicipedidae) from the Miocene of Eastern Siberia (Lake Baikal, Olkhon Island). – Paleontological Journal 49(5): 521–529. DOI: 10.1134/S0031030115050159DOI öffnenSearch in Google Scholar

Zelenkov, N. 2020. The oldest diving anseriform bird from the late Eocene of Kazakhstan and the evolution of aquatic adaptations in the intertarsal joint of waterfowl. – Acta Palaeontologica Polonica 65(4): 733–742. DOI: 10.4202/app.00764.2020DOI öffnenSearch in Google Scholar

Zinoviev, A. V. 2011. Notes on the hindlimb myology and syndesmology of the Mesozoic toothed bird Hesperornis regalis (Aves: Hesperornithiformes). – Journal of Systematic Palaeontology 9(1): 65–84. DOI: 10.1080/14772019.2010.512615DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo