Uneingeschränkter Zugang

Failure Mechanisms of Fibre Reinforced Shotcrete: Numerical Simulations Considering Local Variations in Thickness and Bond Strength


1. Barton N, Lien R & Lunde J: “Engineering classification of rock masses for the design of tunnel support”. Rock Mechanics (6), 1974, pp. 189-236, ttps://doi.org/10.1007/BF01239496 Search in Google Scholar

2. Bieniwanski Z T: “Engineering classification of jointed rock masses”. Civil Engineer in South Africa, 15 (12), 1973. Search in Google Scholar

3. Ansell A: “Investigation of shrinkage cracking in shotcrete on tunnel drains”. Tunnelling and Underground Space Technology, 25 (5), 2010, pp. 607-613, https://doi.org/10.1016/j.tust.2010.04.006 Search in Google Scholar

4. Malmgren L, Nordlund E & Rolund S: “Adhesion strength and shrinkage of shotcrete”. Tunnelling and Underground Space Technology, 20 (1), 2005, pp. 33-48, https://doi.org/10.1016/j.tust.2004.05.002 Search in Google Scholar

5. Sjölander A: “Analyses of shotcrete stress states due to varying lining thickness and irregular rock surfaces, Licentiate Thesis, KTH Royal Institute of Technology, Dept. of Civil & Architectural Engineering, Stockholm, Sweden, 2017. Search in Google Scholar

6. Sjölander A: “Structural behaviour of shotcrete in hard rock tunnelling, Doctoral Thesis, KTH Royal Institute of Technology, Dept. of Civil & Architectural Engineering, Stockholm, Sweden, 2020. Search in Google Scholar

7. Bjureland W, Johansson F, Sjölander A, Spross J & Larsson S: “Probability distributions of shotcrete parameters for reliability-based analyses of tunnel support”. Tunneling and Underground Space Technology, vol 87, 2019, pp. 15-26, https://doi.org/10.1016/j.tust.2019.02.002 Search in Google Scholar

8. CEN. “EN 14488-3 Testing sprayed concrete - Part 3: Flexural strengths (first peak, ultimate and residual) of fibre reinforced beam specimens”. Technical standard, Brussels, Belgium, 2006. Search in Google Scholar

9. CEN. “EN 14488-6 Testing sprayed concrete - Part 6: Thickness of concrete on a substrate”. Technical standard, Brussels, Belgium, 2006. Search in Google Scholar

10. Fernandez-Delgado G, Mahar J & Cording E: “Shotcrete: Structural testing of thin liners”. Technical report, University of Illinois, Illinois, USA, 1975. Search in Google Scholar

11. Holmgren J: “Punch-loaded shotcrete linings on hard rock”. Swedish Rock Mechanics Research Foundation BeFo, Stockholm, Sweden, 1979. Search in Google Scholar

12. Barrett S V L& McCreath D R: “Shotcrete support design in blocky ground: Towards a deterministic approach”. Tunnelling and Underground Space Technology, 10 (1), 1995, pp. 79-89, https://doi.org/10.1016/0886-7798(94)00067-U Search in Google Scholar

13. Sjölander A, Hellgren R & Ansell A: “Modelling aspects to predict failure of a bolt-anchored and fibre reinforced shotcrete lining”. Proceedings, 8th International Symposium on Sprayed Concrete, Trondheim, Norway, 2018, pp. 278-292. Search in Google Scholar

14. Sjölander, A., Hellgren, R., Malm, R., Ansell, A.: “Verification of design philosophy and failure mechanism for a bolt-anchored and fibre reinforced shotcrete lining, Engineering Failure Analysis, 116, 2020, https://doi.org/10.1016/j.engfailanal.2020.104741 Search in Google Scholar

15. Olesen J F: “Fictitious crack propagation in fibre reinforced concrete beams”. Journal of Engineering Mechanics, 127 (3), 2001, pp. 272-280, https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(272) Search in Google Scholar

16. Soetens T & Matthys, S: “Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete”. Construction and Building Materials, 73, 2014, pp. 458-471, https://doi.org/10.1016/j.conbuildmat.2014.09.093 Search in Google Scholar

17. Camanho P & Davila C G: “Mixed-mode decohesion finite elements for the simulation of delamination in composite materials”. Technical memorandum TM-2002-211737, NASA, USA, 2002. Search in Google Scholar

18. Dong W, Yang D, Zhou X, Kastiukas & G Zhang B: “ Experimental and numerical investigations on fracture process zone of rock–concrete interface”. Fatigue and Fracture of Engineering Materials & Structures, 40 (5), 2016, pp. 820-835. Search in Google Scholar

19. Trafikverket (Swedish Transport Administration): “Handbook for planning of tunnels (in Swedish)”. Trafikverket, Borlänge, Sweden, 2016. Search in Google Scholar

20. Stille H, Johansson R & Nord, G: “Rock support and excavations under various conditions”. In Proceedings of International Symposium on Tunnelling for Water Resources and Power Projects, New Delhi, India, 1988. Search in Google Scholar

21. Sjölander A, Ansell A & Malm, R: “Variations in rock support capacity due to local variations in bond strength and shotcrete thickness, Engineering Failure Analysis, 128, 2021, https://doi.org/10.1016/j.engfailanal.2021.105612 Search in Google Scholar

22. Sjödin B: “How to generate random surfaces in COMSOL Multiphysics”. 2017. https://www.comsol.com/blogs/how-to-generate-random-surfaces-in-comsol-multiphysics/ (accessed September 6, 2022) Search in Google Scholar

23. Wilde B & Johansson F: “System Reliability of Concrete Dams with Respect to Foundation Stability: Application to a Spillway”. Journal of Geotechnical and Geoenvironmental Engineering, 139 (2), 2013, pp. 308-319, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000761 Search in Google Scholar

Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Materialverarbeitung