Uneingeschränkter Zugang

Experimental Platform for Investigation of Low-Frequency Magnetic Field Effects on Cells

, ,  und   
07. Juni 2025

Zitieren
COVER HERUNTERLADEN

Tota, M., Jonderko, L., Witek, J., Novickij, V., Kulbacka, J. (2024). Cellular and molecular effects of magnetic fields. International Journal of Molecular Sciences, 25 (16), 8973. https://doi.org/10.3390/ijms25168973 TotaM. JonderkoL. WitekJ. NovickijV. KulbackaJ. 2024 Cellular and molecular effects of magnetic fields International Journal of Molecular Sciences 25 16 8973 https://doi.org/10.3390/ijms25168973 Search in Google Scholar

Lee, H. C., Hong, M.-N., Jung, S. H., Kim, B. C., Suh, Y. J., Ko, Y.-G., Lee, Y.-S., Lee, B.-Y., Cho, Y.-G., Myung, S.-H., Lee, J.-S. (2015). Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics, 36 (7), 506–516. https://doi.org/10.1002/bem.21932 LeeH. C. HongM.-N. JungS. H. KimB. C. SuhY. J. KoY.-G. LeeY.-S. LeeB.-Y. ChoY.-G. MyungS.-H. LeeJ.-S. 2015 Effect of extremely low frequency magnetic fields on cell proliferation and gene expression Bioelectromagnetics 36 7 506 516 https://doi.org/10.1002/bem.21932 Search in Google Scholar

Zhang, M., Li, X., Bai, L., Uchida, K., Bai, W., Wu, B., Xu, W., Zhu, H., Huang, H. (2013). Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study. Bioelectromagnetics, 34 (1), 74–80. https://doi.org/10.1002/bem.21747 ZhangM. LiX. BaiL. UchidaK. BaiW. WuB. XuW. ZhuH. HuangH. 2013 Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study Bioelectromagnetics 34 1 74 80 https://doi.org/10.1002/bem.21747 Search in Google Scholar

Pasi, F., Sanna, S., Paolini, A., Alquati, M., Lascialfari, A., Corti, M. E., Di Liberto, R., Cialdai, F., Monici, M., Nano, R. (2016). Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts. Electromagnetic Biology and Medicine, 35 (4), 343–352. https://doi.org/10.3109/15368378.2016.1138123 PasiF. SannaS. PaoliniA. AlquatiM. LascialfariA. CortiM. E. Di LibertoR. CialdaiF. MoniciM. NanoR. 2016 Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts Electromagnetic Biology and Medicine 35 4 343 352 https://doi.org/10.3109/15368378.2016.1138123 Search in Google Scholar

Radil, R., Carnecka, L., Judakova, Z., Pobocikova, I., Bajtos, M., Janousek, L. (2024). Exploring non-thermal mechanisms of biological reactions to extremely low-frequency magnetic field exposure. Applied Sciences, 14 (20), 9409. https://doi.org/10.3390/app14209409 RadilR. CarneckaL. JudakovaZ. PobocikovaI. BajtosM. JanousekL. 2024 Exploring non-thermal mechanisms of biological reactions to extremely low-frequency magnetic field exposure Applied Sciences 14 20 9409 https://doi.org/10.3390/app14209409 Search in Google Scholar

Lai, H. (2021). Genetic effects of non-ionizing electromagnetic fields. Electromagnetic Biology and Medicine, 40 (2), 264–273. https://doi.org/10.1080/15368378.2021.1881866 LaiH. 2021 Genetic effects of non-ionizing electromagnetic fields Electromagnetic Biology and Medicine 40 2 264 273 https://doi.org/10.1080/15368378.2021.1881866 Search in Google Scholar

Duong, C. N., Kim, J. Y. (2016). Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROS. International Journal of Radiation Biology, 92 (4), 195–201. https://doi.org/10.3109/09553002.2016.1136851 DuongC. N. KimJ. Y. 2016 Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROS International Journal of Radiation Biology 92 4 195 201 https://doi.org/10.3109/09553002.2016.1136851 Search in Google Scholar

Caliogna, L., Medetti, M., Bina, V., Brancato, A. M., Castelli, A., Jannelli, E., Ivone, A., Gastaldi, G., Annunziata, S., Mosconi, M., Pasta, G. (2021). Pulsed electromagnetic fields in bone healing: Molecular pathways and clinical applications. International Journal of Molecular Sciences, 22 (14), 7403. https://doi.org/10.3390/ijms22147403 CaliognaL. MedettiM. BinaV. BrancatoA. M. CastelliA. JannelliE. IvoneA. GastaldiG. AnnunziataS. MosconiM. PastaG. 2021 Pulsed electromagnetic fields in bone healing: Molecular pathways and clinical applications International Journal of Molecular Sciences 22 14 7403 https://doi.org/10.3390/ijms22147403 Search in Google Scholar

Gualdi, G., Costantini, E., Reale, M., Amerio, P. (2021). Wound repair and extremely low frequency-electromagnetic field: Insight from in vitro study and potential clinical application. International Journal of Molecular Sciences, 22 (9), 5037. https://doi.org/10.3390/ijms22095037 GualdiG. CostantiniE. RealeM. AmerioP. 2021 Wound repair and extremely low frequency-electromagnetic field: Insight from in vitro study and potential clinical application International Journal of Molecular Sciences 22 9 5037 https://doi.org/10.3390/ijms22095037 Search in Google Scholar

Sun, J., Tong, Y., Jia, Y., Jia, X., Wang, H., Chen, Y., Wu, J. Jin, W., Ma, Z., Cao, K., Li, X., Chen, Z., Yang, G. (2023). Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism. Scientific Reports, 13 (1), 6989. https://doi.org/10.1038/s41598-023-34144-5 SunJ. TongY. JiaY. JiaX. WangH. ChenY. WuJ. JinW. MaZ. CaoK. LiX. ChenZ. YangG. 2023 Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism Scientific Reports 13 1 6989 https://doi.org/10.1038/s41598-023-34144-5 Search in Google Scholar

Xu, A., Wang, Q., Lin, T. (2020). Low-frequency magnetic fields (LF-MFs) inhibit proliferation by triggering apoptosis and altering cell cycle distribution in breast cancer cells. International Journal of Molecular Sciences, 21 (8), 2952. https://doi.org/10.3390/ijms21082952 XuA. WangQ. LinT. 2020 Low-frequency magnetic fields (LF-MFs) inhibit proliferation by triggering apoptosis and altering cell cycle distribution in breast cancer cells International Journal of Molecular Sciences 21 8 2952 https://doi.org/10.3390/ijms21082952 Search in Google Scholar

Wang, S., Zhou, X., Huang, B., Wang, Z., Zhou, L., Wang, M., Yu, L., Jiang, H. (2016). Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia. Scientific Reports, 6 (1), 30783. https://doi.org/10.1038/srep30783 WangS. ZhouX. HuangB. WangZ. ZhouL. WangM. YuL. JiangH. 2016 Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia Scientific Reports 6 1 30783 https://doi.org/10.1038/srep30783 Search in Google Scholar

Rick, O., von Hehn, U., Mikus, E., Dertinger, H., Geiger, G. (2017). Magnetic field therapy in patients with cytostatics-induced polyneuropathy: A prospective randomized placebo-controlled phase-III study. Bioelectromagnetics, 38 (2), 85–94. https://doi.org/10.1002/bem.22005 RickO. von HehnU. MikusE. DertingerH. GeigerG. 2017 Magnetic field therapy in patients with cytostatics-induced polyneuropathy: A prospective randomized placebo-controlled phase-III study Bioelectromagnetics 38 2 85 94 https://doi.org/10.1002/bem.22005 Search in Google Scholar

Brabant, C., Geerinck, A., Beaudart, C., Tirelli, E., Geuzaine, C., Bruyere, O. (2023). Exposure to magnetic fields and childhood leukemia: A systematic review and meta-analysis of case-control and cohort studies. Reviews on Environmental Health, 38 (2), 229–253. https://doi.org/10.1515/reveh-2021-0112 BrabantC. GeerinckA. BeaudartC. TirelliE. GeuzaineC. BruyereO. 2023 Exposure to magnetic fields and childhood leukemia: A systematic review and meta-analysis of case-control and cohort studies Reviews on Environmental Health 38 2 229 253 https://doi.org/10.1515/reveh-2021-0112 Search in Google Scholar

Baaken, D., Dechent, D., Blettner, M., Drießen, S., Merzenich, H. (2021). Occupational exposure to extremely low-frequency magnetic fields and risk of amyotrophic lateral sclerosis: Results of a feasibility study for a pooled analysis of original data. Bioelectromagnetics, 42 (4), 271–283. https://doi.org/10.1002/bem.22335 BaakenD. DechentD. BlettnerM. DrießenS. MerzenichH. 2021 Occupational exposure to extremely low-frequency magnetic fields and risk of amyotrophic lateral sclerosis: Results of a feasibility study for a pooled analysis of original data Bioelectromagnetics 42 4 271 283 https://doi.org/10.1002/bem.22335 Search in Google Scholar

Dasdag, O., Adalier, N., Dasdag, S. (2020). Electromagnetic radiation and Alzheimer's disease. Biotechnology & Biotechnological Equipment, 34 (1), 1087–1094. https://doi.org/10.1080/13102818.2020.1820378 DasdagO. AdalierN. DasdagS. 2020 Electromagnetic radiation and Alzheimer's disease Biotechnology & Biotechnological Equipment 34 1 1087 1094 https://doi.org/10.1080/13102818.2020.1820378 Search in Google Scholar

Tian, H., Zhu, H., Gao, C., Shi, M., Yang, D., Jin, M., Wang, F., Sui, X. (2023). System-level biological effects of extremely low-frequency electromagnetic fields: An in vivo experimental review. Frontiers in Neuroscience, 17, 1247021. https://doi.org/10.3389/fnins.2023.1247021 TianH. ZhuH. GaoC. ShiM. YangD. JinM. WangF. SuiX. 2023 System-level biological effects of extremely low-frequency electromagnetic fields: An in vivo experimental review Frontiers in Neuroscience 17 1247021 https://doi.org/10.3389/fnins.2023.1247021 Search in Google Scholar

Sincak, M., Luptakova, A., Matusikova, I., Jandacka, P., Sedlakova-Kadukova, J. (2023). Application of a magnetic field to enhance the environmental sustainability and efficiency of microbial and plant biotechnological processes. Sustainability, 15 (19), 14459. https://doi.org/10.3390/su151914459 SincakM. LuptakovaA. MatusikovaI. JandackaP. Sedlakova-KadukovaJ. 2023 Application of a magnetic field to enhance the environmental sustainability and efficiency of microbial and plant biotechnological processes Sustainability 15 19 14459 https://doi.org/10.3390/su151914459 Search in Google Scholar

Liu, J., Wang, D., Wang, H., Yang, N., Hou, J., Lv, X., Gong, L. (2024). Low frequency magnetic field assisted production of acidic protease by Aspergillus niger. Archives of Microbiology, 206, 273. https://doi.org/10.1007/s00203-024-04004-5 LiuJ. WangD. WangH. YangN. HouJ. LvX. GongL. 2024 Low frequency magnetic field assisted production of acidic protease by Aspergillus niger Archives of Microbiology 206 273 https://doi.org/10.1007/s00203-024-04004-5 Search in Google Scholar

Bodewein, L., Schmiedchen, K., Dechent, D., Stunder, D., Graefrath, D., Winter, L., Kraus, T., Driessen, S. (2019). Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). Environmental Research, 171, 247–259. https://doi.org/10.1016/j.envres.2019.01.015 BodeweinL. SchmiedchenK. DechentD. StunderD. GraefrathD. WinterL. KrausT. DriessenS. 2019 Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz) Environmental Research 171 247 259 https://doi.org/10.1016/j.envres.2019.01.015 Search in Google Scholar

Buchachenko, A. (2016). Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics, 37 (1), 1–13. https://doi.org/10.1002/bem.21947 BuchachenkoA. 2016 Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics 37 1 1 13 https://doi.org/10.1002/bem.21947 Search in Google Scholar

International Commission on Non-Ionizing Radiation Protection (ICNIRP). (2025). Gaps in knowledge relevant to the “ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (100 kHz TO 300 GHz)”. Health Physics, 182 (2), 190–202. https://doi.org/10.1097/HP.0000000000001944 International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2025 Gaps in knowledge relevant to the “ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (100 kHz TO 300 GHz)” Health Physics 182 2 190 202 https://doi.org/10.1097/HP.0000000000001944 Search in Google Scholar

Makinistian, L., Vives, L. (2025). Devices, facilities, and shielding for biological experiments with static and extremely low frequency magnetic fields. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 9 (2), 141–156. https://doi.org/10.1109/JERM.2024.3419232 MakinistianL. VivesL. 2025 Devices, facilities, and shielding for biological experiments with static and extremely low frequency magnetic fields IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 9 2 141 156 https://doi.org/10.1109/JERM.2024.3419232 Search in Google Scholar

Ronniger, M., Aguida, B., Stacke, C., Chen, Y., Ehnert, S., Erdmann, N., Eschenburg, G., Falldorf, K., Pooam, M., Wing, A., Ahmad, M. (2022). A novel method to achieve precision and reproducibility in exposure parameters for low-frequency pulsed magnetic fields in human cell cultures. Bioengineering, 9 (10), 595. https://doi.org/10.3390/bioengineering9100595 RonnigerM. AguidaB. StackeC. ChenY. EhnertS. ErdmannN. EschenburgG. FalldorfK. PooamM. WingA. AhmadM. 2022 A novel method to achieve precision and reproducibility in exposure parameters for low-frequency pulsed magnetic fields in human cell cultures Bioengineering 9 10 595 https://doi.org/10.3390/bioengineering9100595 Search in Google Scholar

Bereta, M., Teplan, M., Chafai, D. E., Radil, R., Cifra, M. (2021). Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Scientific Reports, 11, 328. https://doi.org/10.1038/s41598-020-79668-2 BeretaM. TeplanM. ChafaiD. E. RadilR. CifraM. 2021 Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture Scientific Reports 11 328 https://doi.org/10.1038/s41598-020-79668-2 Search in Google Scholar

Vu Viet, H., Teplan, M. (2023). Development of an experimental platform for the measurement of biological response of low-frequency magnetic fields. In 2023 14th International Conference on Measurement. IEEE, 113–116. https://doi.org/10.23919/MEASUREMENT59122.2023.10164326 Vu VietH. TeplanM. 2023 Development of an experimental platform for the measurement of biological response of low-frequency magnetic fields In 2023 14th International Conference on Measurement IEEE 113 116 https://doi.org/10.23919/MEASUREMENT59122.2023.10164326 Search in Google Scholar

Bajla, I., Teplan, M. (2022). Yeast cell detection in color microscopic images using ROC-optimized decoloring and segmentation. IET Image Processing, 16 (2), 606–621. https://doi.org/10.1049/ipr2.12376 BajlaI. TeplanM. 2022 Yeast cell detection in color microscopic images using ROC-optimized decoloring and segmentation IET Image Processing 16 2 606 621 https://doi.org/10.1049/ipr2.12376 Search in Google Scholar

Bereta, M., Teplan, M., Zakar, T., Vuviet, H., Cifra, M., Chafai, D. E. (2024). Biological autoluminescence enables effective monitoring of yeast cell electroporation. Biotechnology Journal, 19 (4), 2300475. https://doi.org/10.1002/biot.202300475 BeretaM. TeplanM. ZakarT. VuvietH. CifraM. ChafaiD. E. 2024 Biological autoluminescence enables effective monitoring of yeast cell electroporation Biotechnology Journal 19 4 2300475 https://doi.org/10.1002/biot.202300475 Search in Google Scholar

Novák J., Strašák, L., Fojt, L., Slaninová, I., Vetterl, V. (2007). Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry, 70 (1), 115–121. https://doi.org/10.1016/j.bioelechem.2006.03.029 NovákJ. StrašákL. FojtL. SlaninováI. VetterlV. 2007 Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae Bioelectrochemistry 70 1 115 121 https://doi.org/10.1016/j.bioelechem.2006.03.029 Search in Google Scholar

An G.-Z., Xu, H., Zhou, Y., Du, L., Miao, X., Jiang, D.-P., Li, K.-C., Guo, G.-Z., Zhang, C., Ding, G.-R. (2015). Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells. PLoS One, 10 (2), e0117672. https://doi.org/10.1371/journal.pone.0117672 AnG.-Z. XuH. ZhouY. DuL. MiaoX. JiangD.-P. LiK.-C. GuoG.-Z. ZhangC. DingG.-R. 2015 Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells PLoS One 10 2 e0117672 https://doi.org/10.1371/journal.pone.0117672 Search in Google Scholar

Song K., Im, S. H., Yoon, Y. J., Kim, H. M., Lee, H. J., Park, G. S. (2018). A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS One, 13 (7), e0199753. https://doi.org/10.1371/journal.pone.0199753 SongK. ImS. H. YoonY. J. KimH. M. LeeH. J. ParkG. S. 2018 A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels PLoS One 13 7 e0199753 https://doi.org/10.1371/journal.pone.0199753 Search in Google Scholar

Jones, R. A., Walleczek, J., Adey, W. R. (1996). Mechanical vibration in “double-wound” magnetic field exposure coils. Bioelectromagnetics, 17 (6), 516–518. https://doi.org/10.1002/(SICI)1521-186X(1996)17:6%3C516::AID-BEM14%3E3.0.CO;2-I JonesR. A. WalleczekJ. AdeyW. R. 1996 Mechanical vibration in “double-wound” magnetic field exposure coils Bioelectromagnetics 17 6 516 518 https://doi.org/10.1002/(SICI)1521-186X(1996)17:6%3C516::AID-BEM14%3E3.0.CO;2-I Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik