This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Tota, M., Jonderko, L., Witek, J., Novickij, V., Kulbacka, J. (2024). Cellular and molecular effects of magnetic fields. International Journal of Molecular Sciences, 25 (16), 8973. https://doi.org/10.3390/ijms25168973TotaM.JonderkoL.WitekJ.NovickijV.KulbackaJ.2024Cellular and molecular effects of magnetic fieldsInternational Journal of Molecular Sciences25168973https://doi.org/10.3390/ijms25168973Search in Google Scholar
Lee, H. C., Hong, M.-N., Jung, S. H., Kim, B. C., Suh, Y. J., Ko, Y.-G., Lee, Y.-S., Lee, B.-Y., Cho, Y.-G., Myung, S.-H., Lee, J.-S. (2015). Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics, 36 (7), 506–516. https://doi.org/10.1002/bem.21932LeeH. C.HongM.-N.JungS. H.KimB. C.SuhY. J.KoY.-G.LeeY.-S.LeeB.-Y.ChoY.-G.MyungS.-H.LeeJ.-S.2015Effect of extremely low frequency magnetic fields on cell proliferation and gene expressionBioelectromagnetics367506516https://doi.org/10.1002/bem.21932Search in Google Scholar
Zhang, M., Li, X., Bai, L., Uchida, K., Bai, W., Wu, B., Xu, W., Zhu, H., Huang, H. (2013). Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study. Bioelectromagnetics, 34 (1), 74–80. https://doi.org/10.1002/bem.21747ZhangM.LiX.BaiL.UchidaK.BaiW.WuB.XuW.ZhuH.HuangH.2013Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro studyBioelectromagnetics3417480https://doi.org/10.1002/bem.21747Search in Google Scholar
Pasi, F., Sanna, S., Paolini, A., Alquati, M., Lascialfari, A., Corti, M. E., Di Liberto, R., Cialdai, F., Monici, M., Nano, R. (2016). Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts. Electromagnetic Biology and Medicine, 35 (4), 343–352. https://doi.org/10.3109/15368378.2016.1138123PasiF.SannaS.PaoliniA.AlquatiM.LascialfariA.CortiM. E.Di LibertoR.CialdaiF.MoniciM.NanoR.2016Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblastsElectromagnetic Biology and Medicine354343352https://doi.org/10.3109/15368378.2016.1138123Search in Google Scholar
Radil, R., Carnecka, L., Judakova, Z., Pobocikova, I., Bajtos, M., Janousek, L. (2024). Exploring non-thermal mechanisms of biological reactions to extremely low-frequency magnetic field exposure. Applied Sciences, 14 (20), 9409. https://doi.org/10.3390/app14209409RadilR.CarneckaL.JudakovaZ.PobocikovaI.BajtosM.JanousekL.2024Exploring non-thermal mechanisms of biological reactions to extremely low-frequency magnetic field exposureApplied Sciences14209409https://doi.org/10.3390/app14209409Search in Google Scholar
Lai, H. (2021). Genetic effects of non-ionizing electromagnetic fields. Electromagnetic Biology and Medicine, 40 (2), 264–273. https://doi.org/10.1080/15368378.2021.1881866LaiH.2021Genetic effects of non-ionizing electromagnetic fieldsElectromagnetic Biology and Medicine402264273https://doi.org/10.1080/15368378.2021.1881866Search in Google Scholar
Duong, C. N., Kim, J. Y. (2016). Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROS. International Journal of Radiation Biology, 92 (4), 195–201. https://doi.org/10.3109/09553002.2016.1136851DuongC. N.KimJ. Y.2016Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROSInternational Journal of Radiation Biology924195201https://doi.org/10.3109/09553002.2016.1136851Search in Google Scholar
Caliogna, L., Medetti, M., Bina, V., Brancato, A. M., Castelli, A., Jannelli, E., Ivone, A., Gastaldi, G., Annunziata, S., Mosconi, M., Pasta, G. (2021). Pulsed electromagnetic fields in bone healing: Molecular pathways and clinical applications. International Journal of Molecular Sciences, 22 (14), 7403. https://doi.org/10.3390/ijms22147403CaliognaL.MedettiM.BinaV.BrancatoA. M.CastelliA.JannelliE.IvoneA.GastaldiG.AnnunziataS.MosconiM.PastaG.2021Pulsed electromagnetic fields in bone healing: Molecular pathways and clinical applicationsInternational Journal of Molecular Sciences22147403https://doi.org/10.3390/ijms22147403Search in Google Scholar
Gualdi, G., Costantini, E., Reale, M., Amerio, P. (2021). Wound repair and extremely low frequency-electromagnetic field: Insight from in vitro study and potential clinical application. International Journal of Molecular Sciences, 22 (9), 5037. https://doi.org/10.3390/ijms22095037GualdiG.CostantiniE.RealeM.AmerioP.2021Wound repair and extremely low frequency-electromagnetic field: Insight from in vitro study and potential clinical applicationInternational Journal of Molecular Sciences2295037https://doi.org/10.3390/ijms22095037Search in Google Scholar
Sun, J., Tong, Y., Jia, Y., Jia, X., Wang, H., Chen, Y., Wu, J. Jin, W., Ma, Z., Cao, K., Li, X., Chen, Z., Yang, G. (2023). Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism. Scientific Reports, 13 (1), 6989. https://doi.org/10.1038/s41598-023-34144-5SunJ.TongY.JiaY.JiaX.WangH.ChenY.WuJ.JinW.MaZ.CaoK.LiX.ChenZ.YangG.2023Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanismScientific Reports1316989https://doi.org/10.1038/s41598-023-34144-5Search in Google Scholar
Xu, A., Wang, Q., Lin, T. (2020). Low-frequency magnetic fields (LF-MFs) inhibit proliferation by triggering apoptosis and altering cell cycle distribution in breast cancer cells. International Journal of Molecular Sciences, 21 (8), 2952. https://doi.org/10.3390/ijms21082952XuA.WangQ.LinT.2020Low-frequency magnetic fields (LF-MFs) inhibit proliferation by triggering apoptosis and altering cell cycle distribution in breast cancer cellsInternational Journal of Molecular Sciences2182952https://doi.org/10.3390/ijms21082952Search in Google Scholar
Wang, S., Zhou, X., Huang, B., Wang, Z., Zhou, L., Wang, M., Yu, L., Jiang, H. (2016). Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia. Scientific Reports, 6 (1), 30783. https://doi.org/10.1038/srep30783WangS.ZhouX.HuangB.WangZ.ZhouL.WangM.YuL.JiangH.2016Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmiaScientific Reports6130783https://doi.org/10.1038/srep30783Search in Google Scholar
Rick, O., von Hehn, U., Mikus, E., Dertinger, H., Geiger, G. (2017). Magnetic field therapy in patients with cytostatics-induced polyneuropathy: A prospective randomized placebo-controlled phase-III study. Bioelectromagnetics, 38 (2), 85–94. https://doi.org/10.1002/bem.22005RickO.von HehnU.MikusE.DertingerH.GeigerG.2017Magnetic field therapy in patients with cytostatics-induced polyneuropathy: A prospective randomized placebo-controlled phase-III studyBioelectromagnetics3828594https://doi.org/10.1002/bem.22005Search in Google Scholar
Brabant, C., Geerinck, A., Beaudart, C., Tirelli, E., Geuzaine, C., Bruyere, O. (2023). Exposure to magnetic fields and childhood leukemia: A systematic review and meta-analysis of case-control and cohort studies. Reviews on Environmental Health, 38 (2), 229–253. https://doi.org/10.1515/reveh-2021-0112BrabantC.GeerinckA.BeaudartC.TirelliE.GeuzaineC.BruyereO.2023Exposure to magnetic fields and childhood leukemia: A systematic review and meta-analysis of case-control and cohort studiesReviews on Environmental Health382229253https://doi.org/10.1515/reveh-2021-0112Search in Google Scholar
Baaken, D., Dechent, D., Blettner, M., Drießen, S., Merzenich, H. (2021). Occupational exposure to extremely low-frequency magnetic fields and risk of amyotrophic lateral sclerosis: Results of a feasibility study for a pooled analysis of original data. Bioelectromagnetics, 42 (4), 271–283. https://doi.org/10.1002/bem.22335BaakenD.DechentD.BlettnerM.DrießenS.MerzenichH.2021Occupational exposure to extremely low-frequency magnetic fields and risk of amyotrophic lateral sclerosis: Results of a feasibility study for a pooled analysis of original dataBioelectromagnetics424271283https://doi.org/10.1002/bem.22335Search in Google Scholar
Dasdag, O., Adalier, N., Dasdag, S. (2020). Electromagnetic radiation and Alzheimer's disease. Biotechnology & Biotechnological Equipment, 34 (1), 1087–1094. https://doi.org/10.1080/13102818.2020.1820378DasdagO.AdalierN.DasdagS.2020Electromagnetic radiation and Alzheimer's diseaseBiotechnology & Biotechnological Equipment34110871094https://doi.org/10.1080/13102818.2020.1820378Search in Google Scholar
Tian, H., Zhu, H., Gao, C., Shi, M., Yang, D., Jin, M., Wang, F., Sui, X. (2023). System-level biological effects of extremely low-frequency electromagnetic fields: An in vivo experimental review. Frontiers in Neuroscience, 17, 1247021. https://doi.org/10.3389/fnins.2023.1247021TianH.ZhuH.GaoC.ShiM.YangD.JinM.WangF.SuiX.2023System-level biological effects of extremely low-frequency electromagnetic fields: An in vivo experimental reviewFrontiers in Neuroscience171247021https://doi.org/10.3389/fnins.2023.1247021Search in Google Scholar
Sincak, M., Luptakova, A., Matusikova, I., Jandacka, P., Sedlakova-Kadukova, J. (2023). Application of a magnetic field to enhance the environmental sustainability and efficiency of microbial and plant biotechnological processes. Sustainability, 15 (19), 14459. https://doi.org/10.3390/su151914459SincakM.LuptakovaA.MatusikovaI.JandackaP.Sedlakova-KadukovaJ.2023Application of a magnetic field to enhance the environmental sustainability and efficiency of microbial and plant biotechnological processesSustainability151914459https://doi.org/10.3390/su151914459Search in Google Scholar
Liu, J., Wang, D., Wang, H., Yang, N., Hou, J., Lv, X., Gong, L. (2024). Low frequency magnetic field assisted production of acidic protease by Aspergillus niger. Archives of Microbiology, 206, 273. https://doi.org/10.1007/s00203-024-04004-5LiuJ.WangD.WangH.YangN.HouJ.LvX.GongL.2024Low frequency magnetic field assisted production of acidic protease by Aspergillus nigerArchives of Microbiology206273https://doi.org/10.1007/s00203-024-04004-5Search in Google Scholar
Bodewein, L., Schmiedchen, K., Dechent, D., Stunder, D., Graefrath, D., Winter, L., Kraus, T., Driessen, S. (2019). Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). Environmental Research, 171, 247–259. https://doi.org/10.1016/j.envres.2019.01.015BodeweinL.SchmiedchenK.DechentD.StunderD.GraefrathD.WinterL.KrausT.DriessenS.2019Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz)Environmental Research171247259https://doi.org/10.1016/j.envres.2019.01.015Search in Google Scholar
Buchachenko, A. (2016). Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics, 37 (1), 1–13. https://doi.org/10.1002/bem.21947BuchachenkoA.2016Why magnetic and electromagnetic effects in biology are irreproducible and contradictory?Bioelectromagnetics371113https://doi.org/10.1002/bem.21947Search in Google Scholar
International Commission on Non-Ionizing Radiation Protection (ICNIRP). (2025). Gaps in knowledge relevant to the “ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (100 kHz TO 300 GHz)”. Health Physics, 182 (2), 190–202. https://doi.org/10.1097/HP.0000000000001944International Commission on Non-Ionizing Radiation Protection (ICNIRP)2025Gaps in knowledge relevant to the “ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (100 kHz TO 300 GHz)”Health Physics1822190202https://doi.org/10.1097/HP.0000000000001944Search in Google Scholar
Makinistian, L., Vives, L. (2025). Devices, facilities, and shielding for biological experiments with static and extremely low frequency magnetic fields. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 9 (2), 141–156. https://doi.org/10.1109/JERM.2024.3419232MakinistianL.VivesL.2025Devices, facilities, and shielding for biological experiments with static and extremely low frequency magnetic fieldsIEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology92141156https://doi.org/10.1109/JERM.2024.3419232Search in Google Scholar
Ronniger, M., Aguida, B., Stacke, C., Chen, Y., Ehnert, S., Erdmann, N., Eschenburg, G., Falldorf, K., Pooam, M., Wing, A., Ahmad, M. (2022). A novel method to achieve precision and reproducibility in exposure parameters for low-frequency pulsed magnetic fields in human cell cultures. Bioengineering, 9 (10), 595. https://doi.org/10.3390/bioengineering9100595RonnigerM.AguidaB.StackeC.ChenY.EhnertS.ErdmannN.EschenburgG.FalldorfK.PooamM.WingA.AhmadM.2022A novel method to achieve precision and reproducibility in exposure parameters for low-frequency pulsed magnetic fields in human cell culturesBioengineering910595https://doi.org/10.3390/bioengineering9100595Search in Google Scholar
Bereta, M., Teplan, M., Chafai, D. E., Radil, R., Cifra, M. (2021). Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Scientific Reports, 11, 328. https://doi.org/10.1038/s41598-020-79668-2BeretaM.TeplanM.ChafaiD. E.RadilR.CifraM.2021Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell cultureScientific Reports11328https://doi.org/10.1038/s41598-020-79668-2Search in Google Scholar
Vu Viet, H., Teplan, M. (2023). Development of an experimental platform for the measurement of biological response of low-frequency magnetic fields. In 2023 14th International Conference on Measurement. IEEE, 113–116. https://doi.org/10.23919/MEASUREMENT59122.2023.10164326Vu VietH.TeplanM.2023Development of an experimental platform for the measurement of biological response of low-frequency magnetic fieldsIn2023 14th International Conference on MeasurementIEEE113116https://doi.org/10.23919/MEASUREMENT59122.2023.10164326Search in Google Scholar
Bajla, I., Teplan, M. (2022). Yeast cell detection in color microscopic images using ROC-optimized decoloring and segmentation. IET Image Processing, 16 (2), 606–621. https://doi.org/10.1049/ipr2.12376BajlaI.TeplanM.2022Yeast cell detection in color microscopic images using ROC-optimized decoloring and segmentationIET Image Processing162606621https://doi.org/10.1049/ipr2.12376Search in Google Scholar
Bereta, M., Teplan, M., Zakar, T., Vuviet, H., Cifra, M., Chafai, D. E. (2024). Biological autoluminescence enables effective monitoring of yeast cell electroporation. Biotechnology Journal, 19 (4), 2300475. https://doi.org/10.1002/biot.202300475BeretaM.TeplanM.ZakarT.VuvietH.CifraM.ChafaiD. E.2024Biological autoluminescence enables effective monitoring of yeast cell electroporationBiotechnology Journal1942300475https://doi.org/10.1002/biot.202300475Search in Google Scholar
Novák J., Strašák, L., Fojt, L., Slaninová, I., Vetterl, V. (2007). Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry, 70 (1), 115–121. https://doi.org/10.1016/j.bioelechem.2006.03.029NovákJ.StrašákL.FojtL.SlaninováI.VetterlV.2007Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiaeBioelectrochemistry701115121https://doi.org/10.1016/j.bioelechem.2006.03.029Search in Google Scholar
An G.-Z., Xu, H., Zhou, Y., Du, L., Miao, X., Jiang, D.-P., Li, K.-C., Guo, G.-Z., Zhang, C., Ding, G.-R. (2015). Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells. PLoS One, 10 (2), e0117672. https://doi.org/10.1371/journal.pone.0117672AnG.-Z.XuH.ZhouY.DuL.MiaoX.JiangD.-P.LiK.-C.GuoG.-Z.ZhangC.DingG.-R.2015Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cellsPLoS One102e0117672https://doi.org/10.1371/journal.pone.0117672Search in Google Scholar
Song K., Im, S. H., Yoon, Y. J., Kim, H. M., Lee, H. J., Park, G. S. (2018). A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS One, 13 (7), e0199753. https://doi.org/10.1371/journal.pone.0199753SongK.ImS. H.YoonY. J.KimH. M.LeeH. J.ParkG. S.2018A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levelsPLoS One137e0199753https://doi.org/10.1371/journal.pone.0199753Search in Google Scholar
Jones, R. A., Walleczek, J., Adey, W. R. (1996). Mechanical vibration in “double-wound” magnetic field exposure coils. Bioelectromagnetics, 17 (6), 516–518. https://doi.org/10.1002/(SICI)1521-186X(1996)17:6%3C516::AID-BEM14%3E3.0.CO;2-IJonesR. A.WalleczekJ.AdeyW. R.1996Mechanical vibration in “double-wound” magnetic field exposure coilsBioelectromagnetics176516518https://doi.org/10.1002/(SICI)1521-186X(1996)17:6%3C516::AID-BEM14%3E3.0.CO;2-ISearch in Google Scholar