Uneingeschränkter Zugang

Real-Time Instance Segmentation of Metal Screw Defects Based on Deep Learning Approach


Zitieren

[1] Wang, T., Chen, Y., Qiao, M., Snoussi, H. (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology, 94 (9), 3465-3471. https://doi.org/10.1007/s00170-017-0882-0.10.1007/s00170-017-0882-0 Search in Google Scholar

[2] Chen, J., Liu, Z., Wang, H., Núnez, A., Han, Z. (2018). Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Transactions on Instrumentation and Measurement, 67 (2), 257-269. DOI: 10.1109/TIM. 2017.2775345. Search in Google Scholar

[3] Kumar, A. (2008). Computer-vision-based fabric defect detection: A survey. IEEE Transactions on Industrial Electronics, 55 (1), 348-363. DOI: 10.1109/TIE.1930. 896476. Search in Google Scholar

[4] Min, Y., Xiao, B., Dang, J., Yue, B., Cheng, T. (2018). Real time detection system for rail surface defects based on machine vision. EURASIP Journal on Image and Video Processing, 3, 1-11. https://doi.org/10.1186/s13640-017-0241-y.10.1186/s13640-017-0241-y Search in Google Scholar

[5] Xie, X. (2008). A review of recent advances in surface defect detection using texture analysis techniques. Special Issue on Quality Control by Artificial Vision, 7 (3), 1-22. https://doi.org/10.5565/rev/elcvia.268.10.5565/rev/elcvia.268 Search in Google Scholar

[6] Mukherjee, A., Chaudhuri, S., Dutta, P., Sen, S., Patra, A. (2006). An object-based coding scheme for frontal surface of defective fluted ingot. ISA Transactions, 45 (1). https://doi.org/10.1016/S0019-0578(07)60060-3.10.1016/S0019-0578(07)60060-3 Search in Google Scholar

[7] Haralick, R., Shanmugam, K., Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3 (6), 610-621. DOI: 10.1109/TSMC.1973.4309314.10.1109/TSMC.1973.4309314 Search in Google Scholar

[8] Hoseini, E., Farhadi, F., Tajeripour, F. (2013). Fabric defect detection using auto-correlation function. International Journal of Computer Theory and Engineering, 5 (1), 114-117. https://doi.org/10.7763/IJCTE.2013.V5.658.10.7763/IJCTE.2013.V5.658 Search in Google Scholar

[9] Guo, G., Zhang, N. (2019). A survey on deep learning based face recognition. Computer Vision and Image Understanding, 189, 102805. https://doi.org/10.1016/j.cviu.2019.102805.10.1016/j.cviu.2019.102805 Search in Google Scholar

[10] Eltay, M., Zidouri, A., Ahmad, I. (2020). Exploring deep learning approaches to recognize handwritten arabic texts. IEEE Access, 8, 89882-89898. DOI: 10.1109/ACCESS.2020.2994248.10.1109/ACCESS.2020.2994248 Search in Google Scholar

[11] Hu, H., Chang, S., Wang, C., Li, K., Cho, H., Chen, Y., Lu, C., Tsai, T., Lee, O. (2021). Deep learning application for vocal fold disease prediction through voice recognition: Preliminary development study. Journal of Medical Internet Research, 23 (6), e25247. https://doi.org/10.2196/25247.10.2196/25247824143134100770 Search in Google Scholar

[12] Zhang, J., Shao, K., Luo, X. (2018). Small sample image recognition using improved convolutional neural network. Journal of Visual Communication and Image Representation, 55, 640-647. https://doi.org/10.1016/j.jvcir.2018.07.011.10.1016/j.jvcir.2018.07.011 Search in Google Scholar

[13] Li, Q., Ren, S. (2012). A real-time visual inspection system for discrete surface defects of rail heads. IEEE Transactions on Instrumentation and Measurement, 61 (8), 2189-2199. DOI: 10.1109/TIM.2012.2184959.10.1109/TIM.2012.2184959 Search in Google Scholar

[14] Feng, H., Jiang, Z., Xie, F., Yang, P., Shi, J., Chen, L. (2014). Automatic fastener classification and defect detection in vision-based railway inspection systems. IEEE Transactions on Instrumentation and Measurement, 63 (4), 877-888. DOI: 10.1109/TIM.2013.2283741.10.1109/TIM.2013.2283741 Search in Google Scholar

[15] Chen, Y., Zhu, X., Wang, Y., Guo, J., Chen, L. (2014). Research on image recognition of internal thread. Tool Engineering, 12, 77-79. Search in Google Scholar

[16] Ren, S., He, K., Girshick, R., Sun, J. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (6), 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.10.1109/TPAMI.2016.257703127295650 Search in Google Scholar

[17] Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., Liang, Z. (2019). Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Computers and Electronics in Agriculture, 157, 417. https://doi.org/10.1016/j.compag.2019.01.012.10.1016/j.compag.2019.01.012 Search in Google Scholar

[18] Zhai, S., Shang, D., Wang, S., Dong, S. (2020). DF-SSD: An improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access, 8, 2169-3536. DOI: 10.1109/ACCESS.2020.2971026.10.1109/ACCESS.2020.2971026 Search in Google Scholar

[19] Xu. B., Wang, W., Falzon, G., Kwan, P., Guo, L., Chen, G., Tait, A., Schneider, D. (2020). Automated cattle counting using Mask R-CNN in quadcopter vision system. Computers and Electronics in Agriculture, 171, 10530. https://doi.org/10.1016/j.compag.2020.105300.10.1016/j.compag.2020.105300 Search in Google Scholar

[20] Bolya, D., Zhou, C., Xiao, F., Lee, Y. (2019). YOLACT: Real-time instance segmentation. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 9157-9166. DOI: 10.1109/ICCV. 2019.00925. Search in Google Scholar

[21] Lin, S., Zhu, K., Feng, C., Chen, Z. (2021). Align-Yolact: A one-stage semantic segmentation network for real-time object detection. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-021-03340-4.10.1007/s12652-021-03340-4 Search in Google Scholar

[22] Shorten, C., Khoshgoftaar, T. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6, 60. https://doi.org/10.1186/s40537-019-0197-0.10.1186/s40537-019-0197-0 Search in Google Scholar

[23] Wu, S., Zhong, S., Liu, Y. (2018). Deep residual learning for image steganalysis. Multimedia Tools and Applications, 77, 10437-10453. https://doi.org/10.1007/s11042-017-4440-4.10.1007/s11042-017-4440-4 Search in Google Scholar

[24] Wang, C., Zhong, C. (2021). Adaptive feature pyramid networks for object detection. IEEE Access, 9, 107024-107032. DOI: 10.1109/ACCESS.2021.3100369.10.1109/ACCESS.2021.3100369 Search in Google Scholar

[25] Qiu, S., Wen, G., Deng, Z., Liu, J., Fan, Y. (2018). Accurate non-maximum suppression for object detection in high-resolution remote sensing images. Remote Sensing Letters, 9 (3), 237-246. https://doi.org/10.1080/2150704X.2017.1415473.10.1080/2150704X.2017.1415473 Search in Google Scholar

[26] Russell, B., Torralba, A., Murphy, K., Freeman, T. (2008). LabelMe: A database and web-based tool for image annotation. International Journal of Computer Vision, 77, 157-173. https://doi.org/10.1007/s11263-007-0090-8.10.1007/s11263-007-0090-8 Search in Google Scholar

[27] Padilla, R., Passos, W., Dias, T., Netto, S., Silva E. (2021). A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics, 10 (3), 279. https://doi.org/10.3390/electronics10030279.10.3390/electronics10030279 Search in Google Scholar

eISSN:
1335-8871
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik