Zitieren

[1] Kuts, Y., Kochan, O., Lysenko, I., Huminilovych, R. (2021). Methodology for measuring phase shifts of signals using discrete Hilbert transform. In 13th International Conference on Measurement. IEEE, 18-21. https://doi.org/10.23919/Measurement52780.2021.9446811.10.23919/Measurement52780.2021.9446811 Search in Google Scholar

[2] Witkovsky, V., Frollo, I. (2020). Measurement science is the science of sciences-there is no science without measurement. Measurement Science Review, 20 (1), 1-5. https://doi.org/10.2478/msr-2020-0001.10.2478/msr-2020-0001 Search in Google Scholar

[3] Jun, S., Przystupa, K., Beshley, M., Kochan, O., Beshley, H., Klymash, M., Wang, J., Pieniak, D. (2020). A cost-efficient software based router and traffic generator for simulation and testing of IP network. Electronics, 9 (1), 40. https://doi.org/10.3390/electronics9010040.10.3390/electronics9010040 Search in Google Scholar

[4] Michalowska, J., Tofil, A., Józwik, J., Pytka, J., Legutko, S., Siemiatkowski, Z., Lukaszewicz, A. (2019). Monitoring the risk of the electric component imposed on a pilot during light aircraft operations in a high-frequency electromagnetic field. Sensors, 19 (24), 5537. https://doi.org/10.3390/s19245537.10.3390/s19245537696096331847421 Search in Google Scholar

[5] Wang, J., Kochan, O., Przystupa, K., Su, J. (2019). Information-measuring system to study the thermocouple with controlled temperature field. Measurement Science Review, 19 (4), 161-169. https://doi.org/10.2478/msr-2019-0022.10.2478/msr-2019-0022 Search in Google Scholar

[6] Macek, W. (2021). Correlation between fractal dimension and areal surface parameters for fracture analysis after bending-torsion fatigue. Metals, 11 (11), 1790. https://doi.org/10.3390/met11111790.10.3390/met11111790 Search in Google Scholar

[7] Machin, G., Bojkovski, J., del Campo, D., Dogan, A.K., Fischer, J., Hermier, Y., Merlone, A., Nielsen, J., Peruzzi, A., Ranostaj, J., Strnad, R. (2014). A European roadmap for thermometry. International Journal of Thermophysics, 35 (3-4), 385-394. https://doi.org/10.1007/s10765-013-1554-4.10.1007/s10765-013-1554-4 Search in Google Scholar

[8] Filtz, J.R., Wu, J., Stacey, C., Hollandt, J., Monte, C., Hay, B., Hameury, J., Villamanan, M.A., Thurzo- Andras, E., Sarge, S. (2015). A European roadmap for thermophysical properties metrology. International Journal of Thermophysics, 36 (2-3), 516-528. https://doi.org/10.1007/s10765-014-1807-x.10.1007/s10765-014-1807-x Search in Google Scholar

[9] Glowacz, A. (2021). Ventilation diagnosis of angle grinder using thermal imaging. Sensors, 21 (8), 2853. https://doi.org/10.3390/+s21082853. Search in Google Scholar

[10] Shu, C., Kochan, O. (2013). Method of thermocouples self verification on operation place. Sensors & Transducers, 160 (12), 55-61. Search in Google Scholar

[11] Jun, S., Kochan, O., Kochan, R. (2016). Thermocouples with built-in self-testing. International Journal of Thermophysics, 37 (4), 37. https://doi.org/10.1007/s10765-016-2044-2.10.1007/s10765-016-2044-2 Search in Google Scholar

[12] Schnaid, F. (2009). In Situ Testing in Geomechanics: The Main Tests. CRC Press, ISBN 9780429152603. https://doi.org/10.1201/9781482266054.10.1201/9781482266054 Search in Google Scholar

[13] Chen, Y., Yang, J., Xu, Y., Jiang, S., Liu, X., Wang, Q. (2016). Status self-validation of sensor arrays using gray forecasting model and bootstrap method. IEEE Transactions on Instrumentation and Measurement, 65 (7), 1626-1640. doi.org/10.1109/TIM.2016.2540942.10.1109/TIM.2016.2540942 Search in Google Scholar

[14] Guzela, S., Dzianik, F. (2020). The recuperative heat exchangers – the mean temperature difference in the special cases of heat transfer. Journal of Mechanical Engineering (Strojnícky časopis), 70 (1), 47-56. http://dx.doi.org/10.2478/scjme-2020-0005.10.2478/scjme-2020-0005 Search in Google Scholar

[15] Yeromenko, V., Kochan, O. (2013). The conditional least squares method for thermocouples error modeling. In 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS). IEEE, Vol. 1, 157-162. https://doi.org/10.1109/IDAACS.2013.6662661.10.1109/IDAACS.2013.6662661 Search in Google Scholar

[16] Mitryasova, O., Pohrebennyk, V., Cygnar, M., Sopilnyak, I. (2016). Environmental natural water quality assessment by method of correlation analysis. In 16th International Multidisciplinary Scientific GeoConference (SGEM 2016), 317-324. https://doi.org/10.5593/SGEM2016/B52/S20.041. Search in Google Scholar

[17] Hu, Z., Su, J., Jotsov, V., Kochan, O., Mykyichuk, M., Kochan, R., Sasiuk, T. (2016). Data science applications to improve accuracy of thermocouples. In 2016 IEEE 8th International Conference on Intelligent Systems (IS). IEEE, 180-188. https://doi.org/10.1109/IS.2016.7737419.10.1109/IS.2016.7737419 Search in Google Scholar

[18] Glowacz, A. (2021). Fault diagnosis of electric impact drills using thermal imaging. Measurement, 171, 108815. https://doi.org/10.1016/j.measurement.2020.108815.10.1016/j.measurement.2020.108815 Search in Google Scholar

[19] Ignatiev, V., Nikitin, A., Yushanov, S. (2013). Measurement of phase shifts of quasiharmonic signals. Numerical Methods and Programming, 14 (4), 424-431. (in Russian) Search in Google Scholar

[20] Kuts, Y., Shcherbak, L. (2009). Statistical Phase Measurement. Ternopil, Ukraine: Ternopil Ivan Puluj National Technical University Press. (in Ukrainian) Search in Google Scholar

[21] Dorozhovets, M., Motalo, V., Stadnyk, B., Vasyliuk, V., Borek, R., Kovalchyk, A. (2005). Fundamentals of Metrology and Measuring Techniques, Volume 2. Lviv, Ukraine: Lviv Polytechnic National University Press. (in Ukrainian) Search in Google Scholar

[22] Tu, Y., Yang, H., Zhang, H., Liu, X. (2014). CMF signal processing method based on feedback corrected ANF and Hilbert transformation. Measurement Science Review, 14 (1), 41-47. https://doi.org/10.2478/msr-2014-0007.10.2478/msr-2014-0007 Search in Google Scholar

[23] Liu, C.Y., Wang, C.Y. (2020). Investigation of phase pattern modulation for digital fringe projection profilometry. Measurement Science Review, 20 (1), 43-49. https://doi.org/10.2478/msr-2020-0006.10.2478/msr-2020-0006 Search in Google Scholar

[24] Sedlacek, M., Krumpholc, M. (2005). Digital measurement of phase difference - a comparative study DSP algorithms. Metrology and Measurement Systems, 12 (4), 427-448. Search in Google Scholar

[25] Wang, K., Tu, Y., Shen, Y., Xiao, W., McLernon, D. (2018). A modulation based phase difference estimator for real sinusoids to compensate for incoherent sampling. Review of Scientific Instruments, 89 (8), 085120. https://doi.org/10.1063/1.5026439.10.1063/1.502643930184650 Search in Google Scholar

[26] Shen, Y.L., Tu, Y.Q., Chen, L.J., Shen, T.A. (2015). Phase difference estimation method based on data extension and Hilbert transform. Measurement Science and Technology, 26 (9), 095003. https://doi.org/10.1088/0957-0233/26/9/095003.10.1088/0957-0233/26/9/095003 Search in Google Scholar

[27] Ignatjev, V., Stankevich, D. (2017). A fast estimation method for the phase difference between two quasiharmonic signals for real-time systems. Circuits, Systems, and Signal Processing, 36 (9), 3854-3863. https://doi.org/10.1007/s00034-016-0484-3.10.1007/s00034-016-0484-3 Search in Google Scholar

[28] Chen, N., Fan, S., Zheng, D. (2019). A phase difference measurement method based on strong tracking filter for Coriolis mass flowmeter. Review of Scientific Instruments, 90 (7), 075003. https://doi.org/10.1063/1.5086714.10.1063/1.508671431370491 Search in Google Scholar

[29] Zhang, M., Wang, H., Qin, H., Zhao, W., Liu, Y. (2018). Phase difference measurement method based on progressive phase shift. Electronics, 7 (6), 86. https://doi.org/10.3390/electronics7060086.10.3390/electronics7060086 Search in Google Scholar

[30] Choi, U.G., Kim, H.Y., Han, S.T., Yang, J.R. (2019). Measurement method of amplitude ratios and phase differences based on power detection among multiple ports. IEEE Transactions on Instrumentation and Measurement, 68 (12), 4615-4617. https://doi.org/10.1109/TIM.2019.2943976.10.1109/TIM.2019.2943976 Search in Google Scholar

[31] Gula, V., Polikarovskykh, O., Horiashchenko, K., Karpova, L.V., Melnychuk, V.M. (2019). Measurements of periodic signals phase shifts with application of direct digital synthesis. Devices and Methods of Measurements, 10 (2), 169-177. https://doi.org/10.21122/2220-9506-2019-10-2-169-177.10.21122/2220-9506-2019-10-2-169-177 Search in Google Scholar

[32] Joint Committee for Guides in Metrology. (2012). International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3rd edition. JCGM 200:2012. Search in Google Scholar

[33] Babak, V., Babak, S., Eremenko, V., Kuts, Y., Myslovych, M., Scherbak, L., Zaporozhets, A. (2021). Models and Measures in Measurements and Monitoring. Springer, ISBN 978-3-030-70782-8. https://doi.org/10.1007/978-3-030-70783-5.10.1007/978-3-030-70783-5 Search in Google Scholar

[34] Bendat, J., Piersol, A. (2010). Random Data. Analysis and Measurement Procedures. John Willey & Sons. ISBN 978-0-470-24877-5.10.1002/9781118032428 Search in Google Scholar

[35] Poularikas, A. (2010). Transforms and Applications Handbook. CRC Press. ISBN 9781420066524. Search in Google Scholar

[36] Mardia, K.V., Jupp, P.E. (1999). Directional Statistics. John Willey & Sons. ISBN 978-0-471-95333-3.10.1002/9780470316979 Search in Google Scholar

[37] Fisher, N. (2011). Statistical Analysis of Circular Data. Cambridge University Press. https://doi.org/10.1017/CBO9780511564345.10.1017/CBO9780511564345 Search in Google Scholar

[38] Marple, L. (1999). Computing the discrete-time “analytic” signal via FFT. IEEE Transactions on Signal Processing, 47 (9), 2600-2603. https://doi.org/10.1109/78.782222.10.1109/78.782222 Search in Google Scholar

[39] Kuts, Y., Protasov, A., Lysenko, I., Dugin, O., Bliznuk, O., Uchanin, V. (2017). Using multidifferential transducer for pulsed eddy current object inspection. In 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 826-829. https://doi.org/10.1109/UKRCON.2017.8100361.10.1109/UKRCON.2017.8100361 Search in Google Scholar

[40] Lysenko, I., Protasov, A., Kuts, Y., Dugin, O. (2017). Pulsed eddy current non-destructive testing. Scientific Proceedings of STUME, 1 (216), 114-117. Search in Google Scholar

[41] Kuts, Y., Protasov, A., Lysenko, I., Dugin, O. (2014). Pulsed eddy current non-destructive testing of the coating thickness. In 11th European Conference on Non-Destructive Testing (ECNDT 2014). Brno, Czech Republic: Brno University of Technology, ISBN 978-80-214-5018-9, 1-8. Search in Google Scholar

[42] Uchanin, V.M. (2013). Overhead Eddy Current Converters of Double Differentiation. Lviv, Ukraine: SPLOM. Search in Google Scholar

[43] Lysenko, I., Kuts, Y., Eremenko, V., Protasov, A., Uchanin, V. (2020). Advanced signal processing methods for inspection of aircraft structural materials. Transactions on Aerospace Research, 2 (259), 27-35. http://dx.doi.org/10.2478/tar-2020-0008.10.2478/tar-2020-0008 Search in Google Scholar

[44] Kuts, Y., Monchenko, O., Bystra, I., et al. (2019). Phase method of ultrasonic pulse-echo thickness measurement of products made of structural materials. Interservise, Kyiv, Ukraine. (in Ukrainian) Search in Google Scholar

[45] Macek, W., Marciniak, Z., Branco, R., Rozumek, D., Królczyk, G.M. (2021). A fractographic study exploring the fracture surface topography of S355J2 steel after pseudo-random bending-torsion fatigue tests. Measurement, 178, 109443. https://doi.org/10.1016/j.measurement.2021.109443.10.1016/j.measurement.2021.109443 Search in Google Scholar

[46] Maruda, R.W., Krolczyk, G.M., Wojciechowski, S., Powalka, B., Klos, S., Szczotkarz, N., Matuszak, M., Khanna, N. (2020). Evaluation of turning with different cooling-lubricating techniques in terms of surface integrity and tribologic properties. Tribology International, 148, 106334. https://doi.org/10.1016/j.triboint.2020.106334.10.1016/j.triboint.2020.106334 Search in Google Scholar

eISSN:
1335-8871
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik