Uneingeschränkter Zugang

Experimental Verification of the Magnetic Field Topography inside a small Hall Thruster


Zitieren

[1] Mazouffre, S. (2016). Electric propulsion for satellites and spacecraft: Established technologies and novel approaches. Plasma Sources Science and Technology, 25, 033002. doi: 10.1088/0963-0252/25/3/033002.10.1088/0963-0252/25/3/033002 Search in Google Scholar

[2] Levchenko, I., Bazaka, K., Ding, Y., Raitses, Y., Mazouffre, S., Henning, T., Klar, P.J., Shinohara, S., Schein, J., Garrigues, L., Kim, M., Lev, D., Taccogna, F., Boswell, R.W., Charles, C., Koizumi, H., Shen, Y., Scharlemann, C., Keidar, M., Xu, S. (2018). Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Applied Physics Reviews, 5, 011104. doi: 10.1063/1.5007734.10.1063/1.5007734 Search in Google Scholar

[3] Levchenko, I., Keidar, M., Cantrell, J., Wu, Y.-L., Kuninaka, H., Bazaka, K., Xu, S. (2018). Explore space using swarms of tiny satellites. Nature, 562, 185–187. doi: 10.1038/d41586-018-06957-2.10.1038/d41586-018-06957-230297738 Search in Google Scholar

[4] Levchenko, I., Xu, S., Wu, Y.-L., Bazaka, K. (2020). Hopes and concerns for astronomy of satellite constellations. Nature Astronomy, 4, 1012–1014. doi: 10.1038/s41550-020-1141-0.10.1038/s41550-020-1141-0 Search in Google Scholar

[5] Goebel, D.M., Katz, I. (2008). Fundamentals of Electric Propulsion. John Wiley & Sons. Search in Google Scholar

[6] Morozov, A.I. (2003). The conceptual development of stationary plasma thrusters. Plasma Physics Reports, 29, 235–250. doi: 10.1134/1.1561119.10.1134/1.1561119 Search in Google Scholar

[7] Boeuf, J.P. (2017). Tutorial: Physics and modeling of Hall thrusters. Journal of Applied Physics, 121, 011101. doi: 10.1063/1.4972269.10.1063/1.4972269 Search in Google Scholar

[8] Levchenko, I., Xu, S., Mazouffre, S., Lev, D., Pedrini, D., Goebel, D., Garrigues, L., Taccogna, F., Bazaka, K. (2020). Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Physics of Plasmas, 27, 020601. doi: 10.1063/1.5109141.10.1063/1.5109141 Search in Google Scholar

[9] Hofer, R.R., Haas, J.M., Peterson, P.Y., Martinez, R.A., Gallimore, A.D. (2000). Optimization of Hall thruster magnetic field topography. In 27th IEEE International Conference on Plasma Science. IEEE, doi: 10.1109/PLASMA.2000.855077.10.1109/PLASMA.2000.855077 Search in Google Scholar

[10] Manzella, D., Jankovsky, R., Hofer, R.R. (2002). Laboratory model 50 kW Hall thruster. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA, doi: 10.2514/6.2002–3676.10.2514/6.2002-3676 Search in Google Scholar

[11] Mitrofanova, O.A., Gnizdor, R.Y. (2013). Influence of SPT magnetic field on life time characteristics of the thruster. In 33rd International Electric Propulsion Conference (October 7–10, 2013, Washington, DC, USA). Search in Google Scholar

[12] Garrigues, L., Mazouffre, S., Henaux, C., Vilamot, R., Rossi, A., Harribey, D., Bourgeois, G., Vaudolon, J., Zurbach, S. (2013). Design and first test campaign results with a new flexible magnetic circuit for a Hall thruster. In 33rd International Electric Propulsion Conference (October 7–10, 2013, Washington, DC, USA). Search in Google Scholar

[13] Mikellides, I.G., Katz, I., Hofer, R.R., Goebel, D.M. (2014). Magnetic shielding of a laboratory Hall thruster. I. Theory and validation. Journal of Applied Physics, 115, 043303. doi: 10.1063/1.4862313.10.1063/1.4862313 Search in Google Scholar

[14] Kim, V.P., Gnizdor, R.Y., Grdlichko, D.P., Merkuriev, D.V., Mitrofanova, O.A., Smirnov, P.G., Shilov, E.A., Zakharchenko, V.S. (2018). Fundamental principles employed for ionization and acceleration layer control in the discharge of a stationary plasma thruster. Journal of Surface Investigation, 12, 1237–1247. doi: 10.1134/S1027451018050610.10.1134/S1027451018050610 Search in Google Scholar

[15] Hofer, R.R., Peterson, P.Y., Gallimore, A.D., Jankovsky, R.S. (2001). A High specific impulse two-stage Hall thruster with plasma lens focusing. In 27th International Electric Propulsion Conference (October 15–19, 2001, Pasadena, CA, USA). Search in Google Scholar

[16] Grimaud, L., Mazouffre S. (2018). Performance comparison between standard and magnetically shielded 200 W Hall thrusters with BN-SiO2 and graphite channel walls. Vacuum, 155, 514–523. doi: 10.1016/j.vacuum.2018.06.056.10.1016/j.vacuum.2018.06.056 Search in Google Scholar

[17] Ding, Y., Li, P., Zhang, X., Wei, L., Sun, H., Peng, W., Yu, D. (2017). Effects of the magnetic field gradient on the wall power deposition of Hall thrusters. Journal of Plasma Physics, 83, 905830205. doi: 10.1017/S0022377817000241.10.1017/S0022377817000241 Search in Google Scholar

[18] Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press, p. 75–79. Search in Google Scholar

eISSN:
1335-8871
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik