Uneingeschränkter Zugang

Compact Electro-Permeabilization System for Controlled Treatment of Biological Cells and Cell Medium Conductivity Change Measurement


Zitieren

[1] Haberl, S., Miklavcic, D., Sersa, G., Frey, W., Rubinsky, B. (2013). Cell membrane electroporation- Part 2: The applications. IEEE Electrical Insulation Magazine, 29 (1), 29-37.10.1109/MEI.2013.6410537Search in Google Scholar

[2] Cahill, K. (2010). Cell-penetrating peptides, electroporation and drug delivery. IET Systems Biology, 4 (6), 367-378.10.1049/iet-syb.2010.000721073236Search in Google Scholar

[3] Tianyi, Z., Tatic-Lucic, S. (2012). On application of positive dielectrophoresis and microstructure confinement on multielectrode array with sensory applications. In IEEE Sensors 2012. IEEE, 1-4.Search in Google Scholar

[4] Lei, U., Lo, Y.J. (2011). Review of the theory of generalised dielectrophoresis. IET Nanobiotechnology, 5 (3), 86-106.10.1049/iet-nbt.2011.000121913790Search in Google Scholar

[5] Potter, H., Heller, R. (2010). Transfection by electroporation. Current Protocols in Molecular Biology. DOI: 10.1002/0471142727.mb0903s62.10.1002/0471142727.mb0903s62297543718265334Search in Google Scholar

[6] Hung, M., Chang, Y. (2012). Single cell lysis and DNA extending using electroporation microfluidic device. BioChip Journal, 6 (1), 84-90.10.1007/s13206-012-6111-xSearch in Google Scholar

[7] Hargrave, B., et al. (2013). Electroporation-mediated gene transfer directly to the swine heart. Gene Therapy, 20, 151-157.10.1038/gt.2012.15338751122456328Search in Google Scholar

[8] Pucinar, G., Krmelj, J., Rebersek, M., Napotnik, T.B, Miklavcic, D. (2011). Equivalent pulse parameters for electroporation. IEEE Transactions on Biomedical Engineering, 58 (11), 3279-3288.10.1109/TBME.2011.216723221900067Search in Google Scholar

[9] Sundararajan, R., et al. 2011. Effect of irreversible electroporation on cancer cells. In 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 164-167.Search in Google Scholar

[10] Morshed, B.I., Shams, M., Mussivand, T. (2014). Investigation of low-voltage pulse parameters on electroporation and electrical lysis using a microfluidic device with interdigitated electrodes. IEEE Transactions on Biomedical Engineering, 61 (3), 871-882.10.1109/TBME.2013.229179424557688Search in Google Scholar

[11] Khan, O.G.M., El-Hag, A.H. (2011). Biological cell electroporation using nanosecond electrical pulses. In 1st Middle East Conference on Biomedical Engineering (MECBME). IEEE, 28-31.10.1109/MECBME.2011.5752057Search in Google Scholar

[12] Cima, L.F., Mir, L.M. (2004). Macroscopic characterization of cell electroporation in biological tissue based on electrical measurements. Applied Physics Letters, 85, 4520-4522.10.1063/1.1818728Search in Google Scholar

[13] Davalos, R.V., Rubinsky, B., Otten, D.M. (2002). A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Transactions on Biomedical Engineering, 49 (4), 400-403.10.1109/10.99116811942732Search in Google Scholar

[14] Pavlin, M., et al. (2005). Effect of cell electroporation on the conductivity of a cell suspension. Biophysical Journal, 88 (6), 4378-4390.10.1529/biophysj.104.048975130566515792975Search in Google Scholar

[15] Suzuki, D.O.H., Ramos, A., Ribeiro, M.C.M., Cazarolli, L.H. (2011). Theoretical and experimental analysis of electroporated membrane conductance in cell suspension. IEEE Transactions on Biomedical Engineering, 58 (12), 3310-3318.10.1109/TBME.2010.210307421193368Search in Google Scholar

[16] Kranjc, M., Bajd, F., Sersa, I., Miklavcic, D. (2011). Magnetic resonance electrical impedance tomography for monitoring electric field distribution during tissue electroporation. IEEE Transactions on Biomedical Engineering, 30 (10), 1771-1778.10.1109/TMI.2011.214732821521664Search in Google Scholar

[17] Davalos, R.V., Otten, D.M., Mir, L.M., Rubinsky, B. (2004). Electrical impedance tomography for imaging tissue electroporation. IEEE Transactions on Biomedical Engineering, 51 (5), 761-767.10.1109/TBME.2004.82414815132502Search in Google Scholar

[18] Granot, Y., Ivorra, A., Maor, E., Rubinsky, B. (2009). In vivo imaging of irreversible electroporation by means of electrical impedance tomography. Physics and Medicine in Biology, 54 (16), 4927-4943.10.1088/0031-9155/54/16/00619641242Search in Google Scholar

[19] Hjouj, M., Rubinsky, B. (2010). Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. Journal of Membrane Biology, 236 (1), 137-146.10.1007/s00232-010-9281-220631997Search in Google Scholar

[20] Zhang, Y., et al. (2010). MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissues: Preclinical feasibility studies in a rodent model. Radiology, 256 (2), 424-432.10.1148/radiol.10091955290943620656834Search in Google Scholar

[21] Sun, T., Morgan, H. (2010). Single-cell microfluidic impedance cytometry: A review. Microfluid Nanofluid, 8, 423-443.10.1007/s10404-010-0580-9Search in Google Scholar

[22] Das, D., Kamil, F.A., Biswas, K., Das, S. (2014). Evaluation of single cell electrical parameters from bioimpedance of cells suspension. RSC Advances, 4, 18178-18185.10.1039/C4RA00400KSearch in Google Scholar

[23] Weaver, J.C, Smith, K.C, Esser, A.T, Son, R.S, Gowrishankar, T.R. (2012). A brief overview of electroporation pulse strength-duration space: A region where additional effects are expected. Bioelectrochemistry, 87, 236-243.10.1016/j.bioelechem.2012.02.007Search in Google Scholar

[24] Zorec, B., Becker, S., Rebersek, M., Miklavcic, D., Pavselj, N. (2013). Skin electroporation for transdermal drug delivery: The influence of the order of different square wave electric pulses. International Journal of Pharmaceutics, 457 (1), 214-223.10.1016/j.ijpharm.2013.09.020Search in Google Scholar

[25] Charpentier, K.P, Wolf, F., Noble, L., Winn, B., Resnick, M., Dupuy, D.E. (2011). Irreversible electroporation of the liver and liver hilum in swine. HPB, 13 (3), 168-173.10.1111/j.1477-2574.2010.00261.xSearch in Google Scholar

[26] Miklavcic, D., Semrov, D., Mekid, H., Mir, L.M. (2000). A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta, 1523, 73-83.10.1016/S0304-4165(00)00101-XSearch in Google Scholar

[27] Meir, A., Rubinsky, B. (2014). Electrical impedance tomographic imaging of a single cell electroporation. Biomedical Microdevices, 16 (3), 1387-2176.10.1007/s10544-014-9845-5Search in Google Scholar

[28] Polevaya, Y., Ermolina, I., Schlesinger, M., Ginzburg, B.Z., Feldman, Y. (1999). Time domain dielectric spectroscopy study of human cells II. Normal and malignant white blood cells. Biochimica et Biophysica Acta, 1419, 257-271.10.1016/S0005-2736(99)00072-3Search in Google Scholar

[29] Chung, C., Waterfall, M., Pells, S., Menachery, A., Smith, S., Pethig, R. (2011). Dielectrophoretic characterization of mammalian cells above 100 MHz. Journal of Electrical Bioimpedance, 2, 64-71.10.5617/jeb.196Search in Google Scholar

eISSN:
1335-8871
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik