Uneingeschränkter Zugang

Proposition of a Solution for the Setting of the Abrasive Waterjet Cutting Technology

[1] Hashish, M. (1989). A model for abrasive - waterjet (AWJ) machining. Journal of Engineering Materialsand Technology, 111 (2), 154-162.10.1115/1.3226448Search in Google Scholar

[2] Hashish, M. (1988). Visualization of the abrasive - waterjet (AWJ) machining. Experimental Mechanics, 28 (2), 159-169.10.1007/BF02317567Search in Google Scholar

[3] Hashish, M. (1984). A modeling study of metal cutting with abrasive water jets. Journal of EngineeringMaterials and Technology, 106 (1), 88-100.Search in Google Scholar

[4] Hloch, S., Valíček, J., Samardžic, I., Kozak, D., Kušnerová, M. (2012). Classification of technical materials according to classes machinability for hydroabrasive cutting. Metalurgija, 51 (1), 125-128.Search in Google Scholar

[5] Kovacevic, R. (1992). Monitoring the depth of abrasive waterjet penetration. International Journal ofMachine Tools & Manufacture, 32 (5), 725-736.10.1016/0890-6955(92)90026-DSearch in Google Scholar

[6] Momber, A., Kovacevic, R. (1998). Principles ofAbrasive Water Jet Machining (1st ed.). Springer.Search in Google Scholar

[7] Kolahan, F., Khajavi, A.H. (2011). Modeling and optimization of abrasive waterjet parameters using regression analysis. International Journal ofAerospace and Mechanical Engineering, 5 (4), 248-253.Search in Google Scholar

[8] Tozan, H. (2011). Fuzzy AHP based decision support system for technology selection in abrasive water jet cutting processes. Tehnički Vjesnik - TechnicalGazette, 18 (2), 187-191.Search in Google Scholar

[9] Hloch, S., Valíček, J. (2011). Prediction of distribution relationship of titanium surface topography created by abrasive waterjet. International Journal of SurfaceScience and Engineering, 5 (2-3), 152-168.10.1504/IJSURFSE.2011.041399Search in Google Scholar

[10] Hloch, S., Valíček, J., Simkulet, V. (2009). Estimation of the smooth zone maximal depth at surfaces created by Abrasive Waterjet. International Journal of SurfaceScience and Engineering, 3 (4), 347-359.10.1504/IJSURFSE.2009.027420Search in Google Scholar

[11] Valíček, J., Držík, M., Hryniewicz, T., Harničárová, M., Rokosz, K., Kušnerová, M., Barčová, K., Bražina, D. (2012). Non-contact method for surface roughness measurement after machining. Measurement ScienceReview, 12 (5), 184-188.10.2478/v10048-012-0028-3Search in Google Scholar

[12] Karpinski, A., Louis, H., Peter, D., Scheer, C., Sudmersen, U., Monno, M., Ravasio, C. (2004). Effect of pressure fluctuations and vibration phenomenon on striation formation in AWJ cutting. In Proceeding ofthe 17th International Conference on Water Jetting, 7-9 September 2004. Mainz, Germany: BHR Group Limited, Cranfield, 123-136.Search in Google Scholar

[13] Henning, A., Anders, S. (1998). Cutting-edge quality improvements through geometrical modelling. In BHR Group Conference Series Publication :International Conference on Jetting Technology, 21-23 September 1998. Brugge, Belgium: Professional Engineering Publishing LTD, 321-328.Search in Google Scholar

[14] Zeng, J., Kim, T.J. (1992). Developement of abrasive waterjet kerf cutting model for brittle materials. In Lichtarowicz, A. (ed.) Jet Cutting Technology. Springer, 483-501.10.1007/978-94-011-2678-6_33Search in Google Scholar

[15] Kušnerová, M., Valíček, J., Hryniewicz, T., Palková, Z., Václavík, V., Řepka, M., Bendová, M. (2013). A proposal for simplifying the method of evaluation of uncertainties in measurement results. MeasurementScience Review, 13 (1), 1-6.10.2478/msr-2013-0007Search in Google Scholar

[16] Valíček, J., Borovička, A., Hloch, S., Hlaváček, P. (2012). Design method for the technology ofhydroabrasive cutting of materials. Patent application number: US 2012/0022839 A1. Washington, D.C.: U.S. Patent and Trademark Office.Search in Google Scholar

eISSN:
1335-8871
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik