Uneingeschränkter Zugang

Fluid Pressure Analysis and Process Stability in Sheet Hydroforming with Die For Steel Sheets

,  und   
17. Feb. 2025

Zitieren
COVER HERUNTERLADEN

F.T. Feyissa, D.R. Kumar, “Enhancement of drawability of cryorolled AA5083 alloy sheets by hydroforming,” J. Mater. Res. Technol., vol. 8, no. 1, pp. 411–423, Jan. 2019, doi: 10.1016/j.jmrt.2018.02.012. Search in Google Scholar

F. Forouhandeh, “A Comparison Between Two Methods of Sheet Hydroforming By Simulation,” Evol. Mech Eng, vol. Volume 2, no. Issue-2, pp. 4–7, 2018, doi: 10.31031/EME.2018.02.000534. Search in Google Scholar

Q. Guo, L. Lang, K. Li, P. Jiang, J. Jiang, and . Zhang, “Research on the hydroforming regularity and process optimization control of complex aluminum alloy part with variable cross-section size,” Procedia Manuf., vol. 50, no. 2019, pp. 332–336, 2020, doi: 10.1016/j.promfg.2020.08.062. Search in Google Scholar

M. Tinkir, M. Dilmeç, M. Türköz, H.S. Halkaci, “Investigation of the effect of hydromechanical deep drawing process parameters on formability of AA5754 sheets metals by using neuro-fuzzy forecasting approach,” J. Intell. Fuzzy Syst., vol. 28, no. 2, pp. 647–659, 2015, doi: 10.3233/IFS-141346. Search in Google Scholar

Y.M. Hwang, K.I. Manabe, “Latest hydroforming technology of metallic tubes and sheets,” Metals (Basel)., vol. 11, no. 9, pp. 1–8, 2021, doi: 10.3390/met11091360. Search in Google Scholar

C. Bell et al., “Enabling sheet hydroforming to produce smaller radii on aerospace nickel alloys,” Int. J. Mater. Form., vol. 12, no. 5, pp. 761–776, 2019, doi: 10.1007/s12289-018-1446-z. Search in Google Scholar

L.-L. Xia, S.-H. Zhang, Y. Xu, S.-F. Chen, B.B. Khina, A.I. Pokrovsky, “Deformation characteristics and inertial effect of complex aluminum alloy sheet part under impact hydroforming: experiments and numerical analysis,” Adv. Manuf., vol. 11, no. 2, pp. 311–328, 2023, doi: 10.1007/s40436-022-00430-0. Search in Google Scholar

S.H. Zhang, J. Danckert, “Development of hydro-mechanical deep drawing,” J. Mater. Process. Technol., vol. 83, no. 1–3, pp. 14–25, 1998, doi: 10.1016/S0924-0136(98)00039-9. Search in Google Scholar

M. Hosseinzade, H. Mostajeran, M. Bakhshi-Jooybari, A.H. Gorji, S. Nourouzi, and S.J. Hosseinipour, “Novel combined standard hydromechanical sheet hydroforming process,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 224, no. 3, pp. 447–457, 2010, doi: 10.1243/09544054JEM1650. Search in Google Scholar

G.-A. Costin, C. Afteni, I. Iacob, V. Păunoiu, N. Baroiu, “An Overview on Sheet Metal Hydroforming Technologies,” 2018, doi: 10.35219/tmb.2018.08. Search in Google Scholar

V. Năstăsescu, G. Bârsan, S. Marzavan, “EFG method used in deep drawing numerical simulation,” International Conference KNOWLEDGE-BASED ORGANIZATION Vol. XXVI No 3. 2020., pp. 136–143, doi: 10.2478/kbo-2020-0128. Search in Google Scholar

T. Trzepieciński, H.G. Lemu, Ł. Chodoła, D. Ficek, I. Szczęsny, “Modelling Anisotropic Phenomena of Friction of Deep-Drawing Quality Steel Sheets Using Artificial Neural Networks,” Adv. Mater. Sci., vol. 21, no. 3, pp. 31–42, 2021, doi: 10.2478/adms-2021-0016. Search in Google Scholar

M. Abbadeni, I. Zidane, H. Zahloul, Z. Madaoui, “Comparative study of conventional and hydromechanical deep drawing processes based on finite element analysis,” Frat. ed Integrita Strutt., vol. 13, no. 49, pp. 282–290, 2019, doi: 10.3221/IGF-ESIS.49.28. Search in Google Scholar

N.T. Thu, N.D. Trung, “Effect of technological and geometrical parameters on formation of radius region at cylindrical product bottom in hydrostatic forming,” J. Korean Soc. Precis. Eng., vol. 36, no. 9, pp. 891–900, 2019, doi: 10.7736/KSPE.2019.36.9.891. Search in Google Scholar

“On the High Fluid Pressure in Hydrostatic Forming for Sheet Metal,” Int. J. Precis. Eng. Manuf., vol. 21, no. 12, pp. 2223–2233, 2020, doi: 10.1007/s12541-020-00426-5. Search in Google Scholar

R. Vasile, “Designing a Die for Hydroforming,” ACTA Univ. Cibiniensis, vol. 68, no. 1, pp. 7–11, 2016, doi: 10.1515/aucts-2016-0002. Search in Google Scholar

R. Vasile, S. Racz, O. Bologa, “Numerical and experimental analysis of the formability of 1. 4301,” vol. 11, no. 2, pp. 89–94, 2025. Search in Google Scholar

“Development of a hydroforming setup for deep drawing of square cups with variable blank holding force technique,” Int. J. Adv. Manuf. Technol., vol. 66, no. 5–8, pp. 1159–1169, 2013, doi: 10.1007/s00170-012-4397-4. Search in Google Scholar

F. Qayyum, “Complex Shape Sheet Hydroforming,” no. July, 2017, doi: 10.13140/RG.2.2.13352.26888. Search in Google Scholar

H. Hu, J.F. Wang, K.T. Fan, T.Y. Chen, S.Y. Wang, “Development of sheet hydroforming for making an automobile fuel tank,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 229, no. 4, pp. 654–663, 2015, doi: 10.1177/0954405414554666. Search in Google Scholar

M. Salahshoor, H. Gorji, M.B. Jooybari, A. Gorji, M. Bakhshi-Jooybari, “Analysis of the effects of tool and process parameters in hydroforming process,” Comput. Mech. Mechatronics Eng., pp. 4–5, 2016, [Online]. Available:https://www.researchgate.net/publication/311543853 Search in Google Scholar

T.K. Le, T.T. Nguyen, N.T. Bui, “Experimental modeling of pressure in the hydrostatic formation of a cylindrical cup with different materials,” Appl. Sci., vol. 11, no. 13, 2021, doi: 10.3390/app11135814. Search in Google Scholar

B. Modi, D.R. Kumar, “Optimization of process parameters to enhance formability of AA 5182 alloy in deep drawing of square cups by hydroforming,” J. Mech. Sci. Technol., vol. 33, no. 11, pp. 5337–5346, Nov. 2019, doi: 10.1007/s12206-019-1026-2. Search in Google Scholar

P.P. Date, K.A. Padmanabhan, “On the formability of 3.15 mm thick low-carbon steel sheets,” J. Mater. Process. Tech., vol. 35, no. 2, pp. 165–181, 1992, doi: 10.1016/0924-0136(92)90244-M. Search in Google Scholar

A. Jaber, A. Mohammed, K. Younis, “Improvement of Formability of AISI 1006 Sheets by Hydroforming with Die in Square Deep Drawing,” Eng. Technol. J., vol. 0, no. 0, pp. 1–9, 2023, doi: 10.30684/etj.2023.141104.1482. Search in Google Scholar

ASTM, “A370: Standard Test Methods and Definitions for Mechanical Testing of Steel Products,” ASTM Int., pp. 1–50, 2014, doi: 10.1520/A0370-11.2. Search in Google Scholar

“Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials,” ASTM B. Stand., vol. 03, pp. 1–8, 2000, doi: 10.1520/E0646-07E01.2. Search in Google Scholar

T.T. Nguyen, N.D. Trung, “On the thinning variations in hydrostatic forming of sheet metal,” J. Mech. Eng. Sci., vol. 15, no. 1, pp. 7824–7836, 2021, doi: 10.15282/jmes.15.1.2021.17.0617. Search in Google Scholar

J.L. Serfontein, O. Damm, N. Sacks, W.T. Gerber, M.J. Botha, “Die Sheet Hydroforming of a Complex-Shaped Aa2024-W Aircraft Skin Panel – From Concept To Final Component,” Stellenbosch University, 2021. doi: 10.7166/32-4-2502. Search in Google Scholar

T. Thu, “Influence of of blank holder pressure on product Influence blank holder pressure on product quality in the quality in the hydrostatic forming for sheet metal hydrostatic forming for sheet metal,” no. 116, pp. 1–15, 2022. Search in Google Scholar