Uneingeschränkter Zugang

ZnO Coatings on Ti6Al4V Substrate: Structural and Antibacterial Properties in Literature Review and Research

Management Systems in Production Engineering's Cover Image
Management Systems in Production Engineering
Special Issue: IMTech2020-INNOVATIVE MINING TECHNOLOGIES. Editors: Dariusz Prostański, Bartosz Polnik

Zitieren

[1] S.K. Aryaa, S. Sahab, J.E. Ramirez-Vickc, V. Guptab, Shekhar Bhansalid and S.P. Singh. Recent advances in ZnO nano-structures and thin films for biosensor applications:Review. Analytica Chimica Acta vol. 737, pp. 1-21, 2012.10.1016/j.aca.2012.05.04822769031 Search in Google Scholar

[2] D. Bian, Y. Guo and Y. Zhao Influence of Zinc Oxide on Corrosion Resistance of Alumina Based Chemically Bonded Ceramic Coatings. Russian Journal of Applied Chemistry, Vol. 89, No. 12, pp. 2091-2094, 2016. Search in Google Scholar

[3] P. Bhattacharjee, H. Begam, A. Chanda and S.K. Nandi. “Animal trial on zinc doped hydroxyapatite: A case study”, Journal of Asian Ceramic Societies, vol. 2(1), pp. 44-51, 2014.10.1016/j.jascer.2014.01.005 Search in Google Scholar

[4] M. Chozhanathmisra, S. Ramya, L. Kavitha and D. Gopi. “Development of zinchallosyte NT/mineral substituted hydroxyapatite bilayer coatings on Ti alloy for orthopedic applications”, Colloids Surf., vol. 511, pp. 357-365, 2016.10.1016/j.colsurfa.2016.10.018 Search in Google Scholar

[5] R.T. Candidato Jr., R. Sergic, J. Jouina, O. Nogueraa, L. Pawłowskia. Advanced microstructural study of solution precursor plasma sprayed Zn doped hydroxyapatite coatings. Journal of the European Ceramic Society, vol. 38, pp. 2134-2144, 2018. Search in Google Scholar

[6] L.F. Deravi, J.D. Swartz and D.W. Wright. “The biomimetic synthesis of metal oxide nanomaterials”, Wiley, pp. 1-10, 2010.10.1002/9783527610419.ntls0137 Search in Google Scholar

[7] Q. Ding, X. Zhang, Y. Huang, Y. Yan, X. Pang. In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. J Mater Sci, vol. 50, pp. 189-202, 201510.1007/s10853-014-8578-4 Search in Google Scholar

[8] M. Epple, “Biomaterials and biomineralization”, Wind, p.165, 2007. Search in Google Scholar

[9] M. Farahmandjou and S. Jurablu. “Co-precipitation synthesis of zinc oxide (ZnO) nanoparticles by zinc nitrate precursor”, Int. J. Bio. Inor. Hybr. Nanomater, vol. 3, pp. 179-184, 2014. Search in Google Scholar

[10] Z.Z. Feng, X.M. Liu, L. Tan, Z.D. Cui, X.J. Yang, Z.Y. Li, Y F. Zheng, K.W.K. Yeung and S.L. Wu. “Electrophoretic Deposited Stable Chitosan@MoS2 Coating with Rapid In Situ Bacteria-Killing Ability under Dual-Light Irradiation”, Small, vol. 14 (21), pp. 1704347, 2018. Search in Google Scholar

[11] M.S. Gezaz, S.M. Aref, M. Khatamian, Investigation of structural properties of hydroxyapatite/zinc oxide nano-composites; an alternative candidate for replacement in recovery of bones in load-tolerating areas, Mat. Chem. and Phy. Vol. 226, pp. 169-176, 2019.10.1016/j.matchemphys.2019.01.005 Search in Google Scholar

[12] C. Jin, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Zheng, K.W.K. Yeung, P.K Chu and S. Wu. “Ag/AgBr-loaded mesoporous silica for rapid sterilization and promotion of wound healing”, Bio-materials Science, vol. 6 (7), pp. 1735-1744, 2018. Search in Google Scholar

[13] K. Kuroda, R. Ichino, M. Okido and O. Takai. “Hydroxyapatite coating on titanium by thermal substrate method in aqueous solution”, Journal of Biomedical Materials Research, vol. 59 (2), pp. 390-397, 2001.10.1002/jbm.1000211745577 Search in Google Scholar

[14] K. Kuroda. “Hydroxyapatite coating of titanium implants using hydroprocessing and evaluation of their osteoconductivity”, Bioinorganic Chemistry and Applications, pp. 730693, 2012.10.1155/2012/730693328704222400015 Search in Google Scholar

[15] J. Karbowniczek, L. Cordero-Arias, S. Virtanen, S.K. Misra, E. Valsami-Jones, L. Tuchscherr, B. Rutkowski, K. Gorecki, P. Bala, A. Czyrska-Filemonowicz and A.R. Boccaccini. “Elecrophoretic deposition of organic/inorganic composite coatings containing ZNo nanoparticles exhibiting antibacterial properties”, Mater. Sci. Eng., C vol. 77, pp. 780-789, 2017.10.1016/j.msec.2017.03.18028532093 Search in Google Scholar

[16] J. Lva, S. Zhanga, S. Wanga, L. Luoa, H. Huanga and J. Zhangba State Chemical transformation of zinc oxide nanoparticles as a result ofinteraction with hydroxyapatite. Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 461, pp. 126-132, 2014.10.1016/j.colsurfa.2014.07.036 Search in Google Scholar

[17] Y. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Zheng, K. Wai, K. Yeung, P.K. Chu and S. Wu. “Rapid Sterilization and Accelerated Wound Healing Using Zn2+ and Graphene Oxide Modified g-C3N4 under Dual Light Irradiation”, Advanced Functional Materials, vol. 28 (30), pp. 1800299, 2018. Search in Google Scholar

[18] M. Moldovan, D. Prodan, V. Popescu, C. Prejmerean, C. Saroși, M. Saplonţai, S. Țălu and E. Vasile. “Structural and morphological properties of HA-ZnO powders prepared for biomaterials”, Open Chem, vol. 13, pp. 725-733, 2015.10.1515/chem-2015-0083 Search in Google Scholar

[19] E. Peter Etape, J. Foba-Tendo, L.J. Ngolui, B.V. Namondo, F.C. Yollande and M.B. Nguefack Nguimezong. Structural Characterization and Magnetic Properties of Undoped and Ti-Doped ZnO Nanoparticles Prepared by Modified O-xalate Route. Hindawi Journal of Nanomaterials Vol. 2018, 9072325, 9 pages.10.1155/2018/9072325 Search in Google Scholar

[20] A. Ronen, R. Semiat and C.G. Dosoretz. “Antibacterial efficiency of a composite spacer containing zinc oxide nano-particles”, Procedia Engineering, pp. 44581-582, 2012. Search in Google Scholar

[21] K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley and A. Punnoose. “Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems”, Appl Phys Lett, vol. 90, pp. 1-3, 2007.10.1063/1.2742324215348818160973 Search in Google Scholar

[22] K.R. Rasmi, S.C. Vanithakumari, R.P. George and U. Kamachi Mudali. “Active Nano Metal Oxide Coating for Bio-fouling Resistance”, Trans Indian Inst Met, vol. 71 (6), p. 1323-1329, 2018. Search in Google Scholar

[23] M. Roknian, A. Fattah-alhosseini, S.O. Gashti and M.K. Keshavarz. “Study of the effect of ZnO nanoparticles addition to PEO coatings on pure Ti substrate: microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer’s physiological solution”, J. Alloys Compd. vol. 740, pp. 330-345, 2018.10.1016/j.jallcom.2017.12.366 Search in Google Scholar

[24] L.F. Sukhodub, L.B. Sukhodub, W. Simka and M. Kumeda. “Hydroxyapatite and brushite coatings on plasma electrolytic oxidized Ti6Al4V alloys obtained by the thermal substrate deposition method”, Materials Letters, vol. 250, pp. 163-166, 2019.10.1016/j.matlet.2019.05.018 Search in Google Scholar

[25] L. Sukhodub, A. Panda, L. Sukhodub, M. Kumeda, K. Dyadyura and I. Pandová. “Hydroxyapatite and zinc oxide based two-layer coating, deposited on ti6al4v substrate”, MM Science Journal, pp. 3494-3499, (2019).10.17973/MMSJ.2019_12_2019030 Search in Google Scholar

[26] R. Sergia, D. Bellucci, R.T. Candidato Jr, L. Lusvarghi, G. Bolelli, L. Pawlowski, G. Candiani, L. Altomared, L. De Nardo and V. Cannillo. Bioactive Zn-doped hydroxyapatite coatings and their antibacterial efficacyagainst Escherichia coli and Staphylococcus aureus. Surface & Coatings Technology, Vol. 352, pp. 84-91, 2018.10.1016/j.surfcoat.2018.08.017 Search in Google Scholar

[27] S. Spriano, S. Yamaguchi, F. Baino and S. Ferraris. “A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination”, Acta Biomater. vol. 79, pp. 1-22, 2018.10.1016/j.actbio.2018.08.01330121373 Search in Google Scholar

[28] S. Stankic, S. Suman, F. Haque and J. Vidic. “Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties”, J Nanobiotechnol., vol. 14, pp. 73, 2016.10.1186/s12951-016-0225-6507576027776555 Search in Google Scholar

[29] L. Tan, J. Li, X. Liu, Z. Cui, X. Yang, K. Wai, K. Yeung, H. Pan, Y. Zheng, X. Wang and S. Wu. “Thermal-Triggered Release from Black Phosphorous with Strengthened Chemical Stability”, Small, vol. 14 (9), pp. 1703197, 2018. Search in Google Scholar

[30] R.K. Thareja and S. Shukla. “Synthesis and characterization of zinc oxide nanoparticles by laser ablation of zinc in liquid”, Appl. Surf. Sci., vol. 253, pp. 8889-8895, 2007. Search in Google Scholar

[31] X. Xie, C. Mao, X. Liu, L. Tan, Z. Cui, X. Yang, S. Zhu, Z. Li, X. Yuan, Y. Zheng, K.W.K. Yeung, P.K. Chu and S. Wu. “Tuning the Bandgap of Photo-Sensitive Polydopamine/Ag3PO4/Graphene Oxide Coating for Rapid, Noninvasive Disinfection of Implants”, ACS Central Science, vol. 4(6), pp. 724-738, 2018.10.1021/acscentsci.8b00177602677929974068 Search in Google Scholar

[32] А. Yanovska, V. Kuznetsov, A. Stanislavov, S. Danilchenko and L. Sukhodub. “Synthesis and characterization of hydroxyapatite-based coatings for medical implants obtained on chemically modified Ti6Al4V substrates”, J. Surf. Coat. Technol., vol. 205, pp. 5324-5329, 2011. Search in Google Scholar

[33] А. Yanovska, V. Kuznetsov, A. Stanislavov, S. Danilchenko and L. Sukhodub. “A study of brushite crystallization from calcium-phosphate solution in the presence of magnesium under the action of a low magnetic field”, Materials science and engineering C, vol. 32, pp. 1883-1887, 2012. Search in Google Scholar

[34] Z.Z. Feng, X.M. Liu, L. Tan, Z.D. Cui, X.J. Yang, Z.Y. Li, Y.F. Zheng, K.W.K. Yeung and S.L. Wu. “Electrophoretic Deposited Stable Chitosan@MoS2 Coating with Rapid In Situ Bacteria-Killing Ability under Dual-Light Irradiation”, Small, vol. 14 (21), pp. 1704347, 2018. Search in Google Scholar

[35] X. Zhang, H. Wang, J. Li, X. He, R. Hang, X. Huang, L. Tian, B. Tang. “Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on Ti”, Ceram. Int., vol. 42, pp. 17095-17100, 2016. Search in Google Scholar

[36] Y. Zhang, X. Liu, Z. Li, S. Zhu, X. Yuan, Z. Cui, X. Yang, P. K Chu and S. Wu. “Nano Ag/ZnO Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration”, ACS Applied Materials & Interfaces, p. 1-46, 2018.10.1021/acsami.7b1735129227620 Search in Google Scholar

[37] A. Panda, J. Duplak, J. Jurko and M. Behun. “Comprehensive Identification of Sintered Carbide Durability in Machining Process of Bearings Steel 100CrMn6”, Advanced Materials, Research, vol. 340, pp. 30-33, 2011.10.4028/www.scientific.net/AMR.340.30 Search in Google Scholar

[38] A. Panda, K. Dyadyura, J. Valicek, M. Harnicarova, J. Zajac, V. Modrak, I. Pandova, P. Vrabel, E. Novakova-Marcincinova and Z. Pavelek. “Manufacturing Technology of Composite Materials – Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene”. Materials, vol. 10, no. 4, pp. 337, 2017.10.3390/ma10040377550690828772733 Search in Google Scholar

[39] J. Valicek, M. Harnicarova, A. Panda, I. Hlavaty, M. Kusnerova, H. Tozan, M. Yagimli and V. Vaclavik. “Mechanism of Creating the Topography of an Abrasive Water Jet Cut Surface”. Machining, joining and modifications of advanced materials, vol. 61, pp. 111-120, 2016.10.1007/978-981-10-1082-8_12 Search in Google Scholar

[40] A. Panda, Š. Olejárová, J. Valíček and M. Harničárová. “Monitoring of the condition of turning machine bearing housing through vibrations”. International Journal of Advanced Manufacturing Technology, vol. 97, no. 1-4, pp. 401-411, 2018.10.1007/s00170-018-1871-7 Search in Google Scholar

[41] J. Valicek, M. Harnicarova, I. Kopal, Z. Palková, M. Kušnerová, A. Panda and V. Šepelák. “Identification of Upper and Lower Level Yield strength in Materials”. Materials, vol. 10, no. 9, pp. 1-20, 2017.10.3390/ma10090982561563728832526 Search in Google Scholar

[42] A. Panda, J. Dobránsky, M. Jančík, I. Pandová and M. Kačalová. “Advantages and effectiveness of the powder metallurgy in manufacturing technologies”. Metalurgija, vol. 57, no. 4, pp. 353-356, 2018. Search in Google Scholar

[43] J. Valicek, M. Harnicarova, I. Hlavaty, R. Grznárik, M. Kusnerova, Z. Mitaľová and A. Panda. “A new approach for the determination of technological parameters for hydroabrasive cutting of materials”. Materialwissenschaft und Werkstofftechnik, vol. 47, pp. 462-471, 2016.10.1002/mawe.201600522 Search in Google Scholar

[44] I. Pandova, T. Gondova and K. Dubayova. “Natural and Modified Clinoptilolite Testing for Reduction of Harmful Substance in Manufacturing Exploitation”. Advanced Materials Research, vols. 518-523, pp. 1757-1760, 2012. Search in Google Scholar

[45] J. Macala, I. Pandova, T. Gondova and K. Dubayova. “Reduction of polycyclic aromatic hydrocarbons and nitrogen monooxide in combustion engine exhaust gases by clinoptilolite”. Gospodarka Surowcami Mineralnymi, vol. 28, no. 2, pp. 113-123. 2012.10.2478/v10269-012-0015-1 Search in Google Scholar

[46] J. Macala, I. Pandova and A. Panda. “Zeolite as a prospective material for the purification of automobile exhaust gases”. Mineral resources management, vol. 33, no. 1, pp. 125-138. 2017.10.1515/gospo-2017-0005 Search in Google Scholar

[47] J. Macala, I. Pandova and A. Panda. “Zeolite as a prospective material for the purification of automobile exhaust gases”. Mineral resources management, vol. 25, no. 4, pp. 23-32. 2009. Search in Google Scholar

[48] A. Panda, V. Nahornyi, I. Pandová, M. Harničárová, M. Kušnerová, J. Valíček and J. Kmec. “Development of the method for predicting the resource of mechanical systems”. International Journal of Advanced Manufacturing Technology, vol. 105, no. 1-4, pp. 1563-1571, 2019. Search in Google Scholar

[49] M. Balara, D. Duplakova and D. Matiskova. “Application of a signal averaging device in robotics 2018”. Measurement. vol. 115, pp. 125-132, 2018.10.1016/j.measurement.2017.10.037 Search in Google Scholar

[50] M. Durdan, B. Stehlikova, M. Pastor, J. Kacur, M. Laciak and P. Flegner. “Research of annealing process in laboratory conditions”. Measurement, vol. 73, 2015, pp. 607-618. ISSN 0263-2241.10.1016/j.measurement.2015.06.008 Search in Google Scholar

[51] K. Monkova and P. Monka. “Some aspects influencing production of porous structures with complex shapes of cells”. Lecture Notes in Mechanical Engineering, pp. 267-276, 2017.10.1007/978-3-319-56430-2_19 Search in Google Scholar

[52] S. Olejarova, J. Dobransky, J. Svetlik and M. Pituk. “Measurements and evaluation of measurements of vibrations in steel milling process”. Measurement, vol. 106, pp. 18-25, 2017. ISSN 0263-2241.10.1016/j.measurement.2017.04.023 Search in Google Scholar

[53] M. Rimar, M. Fedak, A. Kulikov and P. Smeringai. “Study of gaseous flows in closed area with forced ventilation.” MM Science Journal, vol. 2018, no. March, pp. 2188-2191, 2018. Search in Google Scholar

[54] J. Dobránsky, M. Pollák and Z. Doboš. “Assessment of production process capability in the serial production of components for the automotive industry”. Management systems in production engineering, vol. 27, no. 4, pp. 255-258, 2019.10.1515/mspe-2019-0040 Search in Google Scholar

[55] M. Pollák, J. Torok, J. Zajac, M. Kočiško and M. Teliskova. “The structural design of 3D print head and execution of printing via the robotic arm ABB IRB 140”. ICIEA 2018, vol. 2018, pp. 194-198, 2018. Search in Google Scholar

[56] W. Bialy and J. Ružbarský. “Breakdown cause and effect analysis. Case study”. Management systems in production engineering, vol. 26, pp. 83-87, 2018.10.1515/mspe-2018-0013 Search in Google Scholar

[57] D. Duplakova, L. Knapcikova, M. Hatala and E. Szilagyi. “Mathematical modelling of temperature characteristics of RFID tags with their subsequent application in engineering production”. TEM Journal-Technology Education Management Informatics, vol. 5, pp. 411-416, 2016. Search in Google Scholar

[58] J. Kascak, P. Baron, M. Teliskova, J. Zajac, J. Torok and J. Husar. “Implementation of augmented reality into the training and educational process in order to support spatial perception in technical documentation”. 6th IEEE international conference on industrial engineering and applications, pp. 583-587, 2019.10.1109/IEA.2019.8715120 Search in Google Scholar

[59] R. Bielousova. “Developing materials for english for specific purposes online course within the blended learning concept”. TEM Journal-Technology Education Management Informatics, vol. 6, pp. 637-642, 2017. Search in Google Scholar

[60] Ľ. Straka, I. Čorný and J. Piteľ. “Properties evaluation of thin microhardened surface layer of tool steel after wire EDM”. Metals, vol. 6, no. 5, pp. 1-16, 2016.10.3390/met6050095 Search in Google Scholar

[61] Ľ. Straka, I. Čorný and J. Piteľ. “Prediction of the geometrical accuracy of the machined surface of the tool steel EN X30WCrV9-3 after electrical discharge machining with CuZn37 wire electrode”. Metals, vol. 7, no. 11, pp. 1-19, 2017.10.3390/met7110462 Search in Google Scholar

eISSN:
2450-5781
Sprache:
Englisch