This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Davidovits, J., 30 years of successes and failures in geopolymer applications. market trends and potential breakthroughs, Geopolymer 2002 Conference, October 28-29, 2002, Melbourne, Australia, 2002, p. 1–16DavidovitsJ.30 years of successes and failures in geopolymer applications. market trends and potential breakthroughsGeopolymer 2002 Conference, October 28-29, 2002, Melbourne, Australia2002p. 116Search in Google Scholar
Davidovits, J., Geopolymers and geopolymeric materials, J. Therm. Anal., 1989, 35: 429–441DavidovitsJ.Geopolymers and geopolymeric materialsJ. Therm. Anal.198935429441Search in Google Scholar
Davidovits, J. Geopolymer chemistry and applications, 5th edn. Institut Geopolymere, France, 2020DavidovitsJ.Geopolymer chemistry and applications5th ednInstitut GeopolymereFrance2020Search in Google Scholar
Davidovits, J. Geopolymer chemistry & applications, Institut Geopolymere, France, 2015DavidovitsJ.Geopolymer chemistry & applicationsInstitut GeopolymereFrance2015Search in Google Scholar
Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K.S., Singh, M., Environmental impact assessment of fly ash and silica fume based geopolymer concrete, J. Clean. Prod., 2020, 254: 120147. 10.1016/j.jclepro.2020.120147BajpaiR.ChoudharyK.SrivastavaA.SangwanK.S.SinghM.Environmental impact assessment of fly ash and silica fume based geopolymer concreteJ. Clean. Prod.202025412014710.1016/j.jclepro.2020.120147Open DOI
Dener, M., Altunhan, U., Benli, A., A green binder for cold weather applications: enhancing mechanical performance of alkali-activated slag through modulus, alkali dosage, and Portland cement substitution, Arch. Civ. Mech. Eng., 2024, 24(3): 1–12. 10.1007/s43452-024-00991-wDenerM.AltunhanU.BenliA.A green binder for cold weather applications: enhancing mechanical performance of alkali-activated slag through modulus, alkali dosage, and Portland cement substitutionArch. Civ. Mech. Eng.202424311210.1007/s43452-024-00991-wOpen DOI
Dener, M., Karatas, M., Mohabbi, M., High temperature resistance of self compacting alkali activated slag/portland cement composite using lightweight aggregate, Constr. Build. Mater., 2021, 290: 123250. 10.1016/j.conbuildmat.2021.123250DenerM.KaratasM.MohabbiM.High temperature resistance of self compacting alkali activated slag/portland cement composite using lightweight aggregateConstr. Build. Mater.202129012325010.1016/j.conbuildmat.2021.123250Open DOI
Vieira Ramos, F.J.H.T., Reis, R.H.M., Grafova, I., Grafov, A., Monteiro, S.N., Eco-friendly recycled polypropylene matrix composites incorporated with geopolymer concrete waste particles, J. Mater. Res. Technol., 2020, 9(3): 3084–3090. 10.1016/j.jmrt.2020.01.054Vieira RamosF.J.H.T.ReisR.H.M.GrafovaI.GrafovA.MonteiroS.N.Eco-friendly recycled polypropylene matrix composites incorporated with geopolymer concrete waste particlesJ. Mater. Res. Technol.2020933084309010.1016/j.jmrt.2020.01.054Open DOI
Nuaklong, P., Sata, V., Chindaprasirt, P., Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens, Constr. Build. Mater., 2018, 161: 365–373. 10.1016/j.conbuildmat.2017.11.152NuaklongP.SataV.ChindaprasirtP.Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimensConstr. Build. Mater.201816136537310.1016/j.conbuildmat.2017.11.152Open DOI
Hassan, A., Arif, M., Shariq, M., Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure, J. Clean. Prod., 2019, 223: 704–728. 10.1016/j.jclepro.2019.03.051HassanA.ArifM.ShariqM.Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructureJ. Clean. Prod.201922370472810.1016/j.jclepro.2019.03.051Open DOI
Yip, C.K., Lukey, G.C., Provis, J.L., van Deventer, J.S.J., Van Deventer, J.S.J., Effect of calcium silicate sources on geopolymerisation, Cem. Concr. Res., 2008, 38: 554–564. 10.1016/j.cemconres.2007.11.001YipC.K.LukeyG.C.ProvisJ.L.van DeventerJ.S.J.Van DeventerJ.S.J.Effect of calcium silicate sources on geopolymerisationCem. Concr. Res.20083855456410.1016/j.cemconres.2007.11.001Open DOI
Dener, M., Mechanical and durability properties of alkali-activated slag/waste basalt powder mixtures, Proc. Inst. Mech. Eng., Part. L J. Mat. Des. Appl., Aug 2023, 237(10): 2250–2265. 10.1177/14644207231193615DenerM.Mechanical and durability properties of alkali-activated slag/waste basalt powder mixturesProc. Inst. Mech. Eng., Part. L J. Mat. Des. Appl.Aug 2023237102250226510.1177/14644207231193615Open DOI
Hutagi, A., Khadiranaikar, R.B., Ahmad, A., Behavior of geopolymer concrete under cyclic loading, Constr. Build. Mater., 2020, 246: 118430. 10.1016/j.conbuildmat.2020.118430HutagiA.KhadiranaikarR.B.AhmadA.Behavior of geopolymer concrete under cyclic loadingConstr. Build. Mater.202024611843010.1016/j.conbuildmat.2020.118430Open DOI
Jayanthi, N., Ghosh, T., Meena, R.K., Verma, M., Length and width of low-light, concrete hairline crack detection.pdf, Asian J. Civ. Eng., 2024, 25(3): 2705–2714. 10.1007/s42107-023-00939-0JayanthiN.GhoshT.MeenaR.K.VermaM.Length and width of low-light, concrete hairline crack detection.pdfAsian J. Civ. Eng.20242532705271410.1007/s42107-023-00939-0Open DOI
Erdogan, S.T., Properties of ground perlite geopolymer mortars, J. Mater. Civ. Eng., 2015, 10: 04014210. 10.1061/(ASCE)MT.1943-5533.0001172ErdoganS.T.Properties of ground perlite geopolymer mortarsJ. Mater. Civ. Eng.2015100401421010.1061/(ASCE)MT.1943-5533.0001172Open DOI
Verma, M., Nigam, M., Effect of FRP on the strength of geopolymer concrete, AIP Conf. Proc., 2023, 2721(1): 020030. 10.1063/5.0154114VermaM.NigamM.Effect of FRP on the strength of geopolymer concreteAIP Conf. Proc.20232721102003010.1063/5.0154114Open DOI
Vickers, L., Van Riessen, A., Rickard, W.D.A. Fire-resistant geopolymers role of fibres and fillers to enhance thermal properties, Singapore Heidelberg New York Dordrecht London: Springer; 2015. 10.1007/978-981-287-311-8VickersL.Van RiessenA.RickardW.D.A.Fire-resistant geopolymers role of fibres and fillers to enhance thermal propertiesSingapore Heidelberg New York Dordrecht LondonSpringer201510.1007/978-981-287-311-8Open DOI
Zhang, B., Mackenzie, Æ.K.J.D., Brown, I.W.M.M., MacKenzie, K.J.D., Brown, I.W.M.M., Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate, J. Mater. Sci., 2009, 44: 4668–4676. 10.1007/s10853-009-3715-1ZhangB.MackenzieÆ.K.J.D.BrownI.W.M.M.MacKenzieK.J.D.BrownI.W.M.M.Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicateJ. Mater. Sci.2009444668467610.1007/s10853-009-3715-1Open DOI
Nguyen, K.T., Nguyen, Q.D., Le, T.A., Shin, J., Lee, K., Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches, Constr. Build. Mater., 2020, 247: 118581. 10.1016/j.conbuildmat.2020.118581NguyenK.T.NguyenQ.D.LeT.A.ShinJ.LeeK.Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approachesConstr. Build. Mater.202024711858110.1016/j.conbuildmat.2020.118581Open DOI
Pacheco-Torgal, F., Abdollahnejad, Z., Miraldo, S., Baklouti, S., Ding, Y., An overview on the potential of geopolymers for concrete infrastructure rehabilitation, Constr. Build. Mater., 2012, 36: 1053–1058. 10.1016/j.conbuildmat.2012.07.003Pacheco-TorgalF.AbdollahnejadZ.MiraldoS.BakloutiS.DingY.An overview on the potential of geopolymers for concrete infrastructure rehabilitationConstr. Build. Mater.2012361053105810.1016/j.conbuildmat.2012.07.003Open DOI
Cao, V.D., Bui, T.Q., Kjøniksen, A.L., Thermal analysis of multi-layer walls containing geopolymer concrete and phase change materials for building applications, Energy, 2019, 186: 115792. 10.1016/j.energy.2019.07.122CaoV.D.BuiT.Q.KjøniksenA.L.Thermal analysis of multi-layer walls containing geopolymer concrete and phase change materials for building applicationsEnergy201918611579210.1016/j.energy.2019.07.122Open DOI
Pan, Z., Sanjayan, J.G., Stress–strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures, Cem. Concr. Compos., 2010, 32(9): 657–664. 10.1016/j.cemconcomp.2010.07.010PanZ.SanjayanJ.G.Stress–strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperaturesCem. Concr. Compos.201032965766410.1016/j.cemconcomp.2010.07.010Open DOI
Cao, V.D, Pilehvar S., Salas-Bringas C., Szczotok A.M., Rodriguez J.F., Carmona M., et al., Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications, Energy Convers. Manag., 2017, 133: 56–66. 10.1016/j.enconman.2016.11.061CaoV.DPilehvarS.Salas-BringasC.SzczotokA.M.RodriguezJ.F.CarmonaM.Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applicationsEnergy Convers. Manag.2017133566610.1016/j.enconman.2016.11.061Open DOI
Dhawan, A., Verma, M., Goel, R., Effect of an inorganic compound on geopolymer concrete and ordinary portland cement concrete, Libr. Prog. Int., 2024, 44(3): 8368–8383DhawanA.VermaM.GoelR.Effect of an inorganic compound on geopolymer concrete and ordinary portland cement concreteLibr. Prog. Int.202444383688383Search in Google Scholar
Dhawan, A., Verma, M., Goel, R., Evaluating economic indexing between various kinds of geopolymer concrete to ordinary cement concrete, Libr. Prog. Int., 2024, 44(3): 4939–4955DhawanA.VermaM.GoelR.Evaluating economic indexing between various kinds of geopolymer concrete to ordinary cement concreteLibr. Prog. Int.202444349394955Search in Google Scholar
Foster, S.J., Amin, A., The behaviour of steel-fibre- reinforced geopolymer concrete beams in shear, Mag. Concr. Res., 2013, 65: 5FosterS.J.AminA.The behaviour of steel-fibre- reinforced geopolymer concrete beams in shearMag. Concr. Res.2013655Search in Google Scholar
Rangan, B.V., Geopolymer concrete for environmental protection, Indian Concr. J., 2014, 88: 41–59RanganB.V.Geopolymer concrete for environmental protectionIndian Concr. J.2014884159Search in Google Scholar
Sing Ng, T., Wales, S., Ali Amin, A., Stephen Foster, A.J., The behaviour of steel-fibre-reinforced geopolymer concrete beams in shear, Mag. Concr. Res., 2013, 65(5): 308–318. 10.1680/macr.12.00081Sing NgT.WalesS.Ali AminA.Stephen FosterA.J.The behaviour of steel-fibre-reinforced geopolymer concrete beams in shearMag. Concr. Res.201365530831810.1680/macr.12.00081Open DOI
Jeyasehar, C.A., Salahuddin, M. Development of fly ash based geopolymer concrete precast elements, Annamalai University, 2013, p. 1–77JeyaseharC.A.SalahuddinM.Development of fly ash based geopolymer concrete precast elementsAnnamalai University2013p. 177Search in Google Scholar
Singh, B., Ishwarya, G., Gupta, M., Bhattacharyya, S.K., Geopolymer concrete: A review of some recent developments, Constr. Build. Mater., 2015, 85: 78–90. 10.1016/j.conbuildmat.2015.03.036SinghB.IshwaryaG.GuptaM.BhattacharyyaS.K.Geopolymer concrete: A review of some recent developmentsConstr. Build. Mater.201585789010.1016/j.conbuildmat.2015.03.036Open DOI
Nigam, M., Verma, M., Effect of nano-silica on the fresh and mechanical properties of conventional concrete, Forces Mech., 2023, 10(22): 100165. 10.1016/j.finmec.2022.100165NigamM.VermaM.Effect of nano-silica on the fresh and mechanical properties of conventional concreteForces Mech.2023102210016510.1016/j.finmec.2022.100165Open DOI
Nigam, M., Verma, M., Prediction of compressive strength of nano-silica concrete by using random forest algorithm, Asian J. Civ. Eng., 2024, 25: 5205-5213. 10.1007/s42107-024-01107-8NigamM.VermaM.Prediction of compressive strength of nano-silica concrete by using random forest algorithmAsian J. Civ. Eng.2024255205521310.1007/s42107-024-01107-8Open DOI
Van Jaarsveld, J.G.S., Van Deventer, J.S.J., Lukey, G.C., The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chem. Eng. J., 2002, 89: 63–73Van JaarsveldJ.G.S.Van DeventerJ.S.J.LukeyG.C.The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymersChem. Eng. J.2002896373Search in Google Scholar
Nagajothi, S., Elavenil, S., Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete – artificial neural network, Silicon, 2020, 12(5): 1011–1021. 10.1007/s12633-019-00203-8NagajothiS.ElavenilS.Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete – artificial neural networkSilicon20201251011102110.1007/s12633-019-00203-8Open DOI
Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V., Chindaprasirt, P., Natural fiber reinforced high calcium fly ash geopolymer mortar, Constr. Build. Mater., 2020, 241: 118143. 10.1016/j.conbuildmat.2020.118143WongsaA.KunthawatwongR.NaenudonS.SataV.ChindaprasirtP.Natural fiber reinforced high calcium fly ash geopolymer mortarConstr. Build. Mater.202024111814310.1016/j.conbuildmat.2020.118143Open DOI
Xu, F., Deng, X., Peng, C., Zhu, J., Chen, J., Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites, Constr. Build. Mater., 2017, 150: 179–189. 10.1016/j.conbuildmat.2017.05.172XuF.DengX.PengC.ZhuJ.ChenJ.Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer compositesConstr. Build. Mater.201715017918910.1016/j.conbuildmat.2017.05.172Open DOI
Biondi, L., Vlachakis, C., Hamilton, A., Ambient cured fly ash geopolymer coatings for concrete, Materials, 2019, 12: 1–24. 10.3390/ma12060923BiondiL.VlachakisC.HamiltonA.Ambient cured fly ash geopolymer coatings for concreteMaterials20191212410.3390/ma12060923Open DOI
Arunkumar, K., Muthukannan, M., Suresh, A., Chithambar Ganesh, A., Mitigation of waste rubber tire and waste wood ash by the production of rubberized low calcium waste wood ash based geopolymer concrete and influence of waste rubber fibre in setting properties and mechanical behavior, Environ. Res., 2021, 194: 110661. 10.1016/j.envres.2020.110661ArunkumarK.MuthukannanM.SureshA.Chithambar GaneshA.Mitigation of waste rubber tire and waste wood ash by the production of rubberized low calcium waste wood ash based geopolymer concrete and influence of waste rubber fibre in setting properties and mechanical behaviorEnviron. Res.202119411066110.1016/j.envres.2020.110661Open DOI
Jithendra, C., Elavenil, S., Influences of parameters on slump flow and compressive strength properties of aluminosilicate based flowable geopolymer concrete using taguchi method, Silicon, 2020, 12(3): 595–602. 10.1007/s12633-019-00166-wJithendraC.ElavenilS.Influences of parameters on slump flow and compressive strength properties of aluminosilicate based flowable geopolymer concrete using taguchi methodSilicon202012359560210.1007/s12633-019-00166-wOpen DOI
Gupta, A., Gupta, N., Saxena, K.K., Mechanical and durability characteristics assessment of geopolymer composite (GPC) at varying silica fume content, J. Compos. Sci., 2021, 5(9): 237. 10.3390/JCS5090237GuptaA.GuptaN.SaxenaK.K.Mechanical and durability characteristics assessment of geopolymer composite (GPC) at varying silica fume contentJ. Compos. Sci.20215923710.3390/JCS5090237Open DOI
Shehata, N., Mohamed, O.A., Sayed, E.T., Abdelkareem, M.A., Olabi, A.G., Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials, Sci. Total. Environ., 2022, 836: 155577. 10.1016/j.scitotenv.2022.155577ShehataN.MohamedO.A.SayedE.T.AbdelkareemM.A.OlabiA.G.Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentialsSci. Total. Environ.202283615557710.1016/j.scitotenv.2022.155577Open DOI
Suriya Prakash, A., Kumar, S.G., Suriya, A., Senthil, G., Fly, A., Experimental study on geopolymer concrete using steel fibres, Int. J. Eng. Trends Technol., 2015, 21(8): 396–399Suriya PrakashA.KumarS.G.SuriyaA.SenthilG.FlyA.Experimental study on geopolymer concrete using steel fibresInt. J. Eng. Trends Technol.2015218396399Search in Google Scholar
Bhattacharjee, R., Laskar, A.I., Rheological behavior of fly ash based geopolymer concrete, 35th Conference on our world in concrete & structures, Singapore, 2010, p. 1–7BhattacharjeeR.LaskarA.I.Rheological behavior of fly ash based geopolymer concrete35th Conference on our world in concrete & structures, Singapore2010p. 17Search in Google Scholar
Kantarci, F., Ekinci, E., Effect of naoh concentrations and curing temperatures on mechanical properties of geopolymer pastes produced from fly ash and elazığ ferrochrome slag, Int. J. Mech. Prod. Eng., 2018, 5(12): 97–99KantarciF.EkinciE.Effect of naoh concentrations and curing temperatures on mechanical properties of geopolymer pastes produced from fly ash and elazığ ferrochrome slagInt. J. Mech. Prod. Eng.20185129799Search in Google Scholar
Venkatesan, R.P., Pazhani, K.C., Strength and durability properties of geopolymer concrete made with ground granulated blast furnace slag and black rice husk ash, KSCE J. Civ. Eng., 2016, 20: 2384–2391. 10.1007/s12205-015-0564-0VenkatesanR.P.PazhaniK.C.Strength and durability properties of geopolymer concrete made with ground granulated blast furnace slag and black rice husk ashKSCE J. Civ. Eng.2016202384239110.1007/s12205-015-0564-0Open DOI
Wiyono, D., Hardjito, D., Antoni, P., Hardjito, D., Improving the durability of pozzolan concrete using alkaline solution and geopolymer coating, Procedia Eng., 2015, 125: 747–753. 10.1016/j.proeng.2015.11.121WiyonoD.HardjitoD.AntoniP.HardjitoD.Improving the durability of pozzolan concrete using alkaline solution and geopolymer coatingProcedia Eng.201512574775310.1016/j.proeng.2015.11.121Open DOI
Ba, Z., Bradi, V., Mechanical and microstructural properties of alkali-activated fly ash geopolymers, J. Hazard. Mater., 2010, 181: 35–42. 10.1016/j.jhazmat.2010.04.064BaZ.BradiV.Mechanical and microstructural properties of alkali-activated fly ash geopolymersJ. Hazard. Mater.2010181354210.1016/j.jhazmat.2010.04.064Open DOI
Wang, Y., Zheng, T., Zheng, X., Liu, Y., Darkwa, J., Zhou, G., Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers, Constr. Build. Mater., 2020, 251: 118960. 10.1016/j.conbuildmat.2020.118960WangY.ZhengT.ZhengX.LiuY.DarkwaJ.ZhouG.Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibersConstr. Build. Mater.202025111896010.1016/j.conbuildmat.2020.118960Open DOI
Zhuang, X.Y, Chen L., Komarneni S., Zhou C.H., Tong D.S., Yang H.M., et al., Fly ash-based geopolymer: Clean production, properties and applications, J. Clean. Prod., 2016, 125: 253–267. 10.1016/j.jclepro.2016.03.019ZhuangX.YChenL.KomarneniS.ZhouC.H.TongD.S.YangH.M.Fly ash-based geopolymer: Clean production, properties and applicationsJ. Clean. Prod.201612525326710.1016/j.jclepro.2016.03.019Open DOI
Upreti, K., Verma, M., Prediction of compressive strength of high-volume fly ash concrete using artificial neural network, J. Eng. Res. App., 2022, 1(2): 24–32. 10.55953/JERA.2022.2104UpretiK.VermaM.Prediction of compressive strength of high-volume fly ash concrete using artificial neural networkJ. Eng. Res. App.202212243210.55953/JERA.2022.2104Open DOI
Upreti, K, Verma M., Agrawal M., Garg J., Kaushik R., Agrawal C., et al., Prediction of mechanical strength by using an artificial neural network and random forest algorithm, J. Nanomater., 2022, 2022: 1–12. 10.1155/2022/7791582UpretiKVermaM.AgrawalM.GargJ.KaushikR.AgrawalC.Prediction of mechanical strength by using an artificial neural network and random forest algorithmJ. Nanomater.2022202211210.1155/2022/7791582Open DOI
Kumar, N., Raut, R.D., Upreti, K., Alam, M.S., Shafiuddin, M., Verma, M., Environmental concern in TPB model for sustainable IT adoption, International Conference on Information Systems and Intelligent Applications, Lecture Notes in Networks and Systems, Vol. 550, 2023, p. 59–70. 10.1007/978-3-031-16865-9_5KumarN.RautR.D.UpretiK.AlamM.S.ShafiuddinM.VermaM.Environmental concern in TPB model for sustainable IT adoptionInternational Conference on Information Systems and Intelligent Applications, Lecture Notes in Networks and SystemsVol. 5502023p. 597010.1007/978-3-031-16865-9_5Open DOI
Kumar, R., Verma, M., Dev, N., Lamba, N., Influence of chloride and sulfate solution on the long‐term durability of modified rubberized concrete, J. Appl. Polym. Sci., 2022, 139: 1–15. 10.1002/app.52880KumarR.VermaM.DevN.LambaN.Influence of chloride and sulfate solution on the long‐term durability of modified rubberized concreteJ. Appl. Polym. Sci.202213911510.1002/app.52880Open DOI
Kumar, R., Verma, M., Dev, N., Analysis of PCE-based superplasticiser for the different types of cement using marsh cone test, Evergreen, 2024, 11(2): 665–672. 10.5109/7183337KumarR.VermaM.DevN.Analysis of PCE-based superplasticiser for the different types of cement using marsh cone testEvergreen202411266567210.5109/7183337Open DOI
Kumar, R., Verma, M., Dev, N., Investigation on the effect of seawater condition, sulphate attack, acid attack, freeze–thaw condition, and wetting–drying on the geopolymer concrete, Iran. J. Sci. Technol. Trans. Civ. Eng.Trans. Civ. Eng., 2022, 46(4): 2823–2853. 10.1007/s40996-021-00767-9KumarR.VermaM.DevN.Investigation on the effect of seawater condition, sulphate attack, acid attack, freeze–thaw condition, and wetting–drying on the geopolymer concreteIran. J. Sci. Technol. Trans. Civ. Eng.Trans. Civ. Eng.20224642823285310.1007/s40996-021-00767-9Open DOI
Sharma, U., Gupta, N., Verma, M., Prediction of compressive strength of geopolymer concrete using artificial neural network, Asian J. Civ. Eng., 2023, 24(8): 2837–2850. 10.1007/s42107-023-00678-2SharmaU.GuptaN.VermaM.Prediction of compressive strength of geopolymer concrete using artificial neural networkAsian J. Civ. Eng.20232482837285010.1007/s42107-023-00678-2Open DOI
Sharma, U., Gupta, N., Bahrami, A., Özkılıç, Y.O., Verma, M., Behavior of fibers in geopolymer concrete: A comprehensive review, Buildings, 2024, 14(136): 1–28. 10.3390/buildings14010136SharmaU.GuptaN.BahramiA.ÖzkılıçY.O.VermaM.Behavior of fibers in geopolymer concrete: A comprehensive reviewBuildings20241413612810.3390/buildings14010136Open DOI
Sharma, U., Gupta, N., Verma, M., Prediction of compressive strength of GGBFS and flyash-based geopolymer composite by linear regression, lasso regression, and ridge regression, Asian J. Civ. Eng., 2023, 24(8): 3399–3411. 10.1007/s42107-023-00721-2SharmaU.GuptaN.VermaM.Prediction of compressive strength of GGBFS and flyash-based geopolymer composite by linear regression, lasso regression, and ridge regressionAsian J. Civ. Eng.20232483399341110.1007/s42107-023-00721-2Open DOI
Chouksey, A., Verma, M., Dev, N., Rahman, I., Upreti, K., An investigation on the effect of curing conditions on the mechanical and microstructural properties of the geopolymer concrete, Mater. Res. Express, 2022, 9(5): 55003. 10.1088/2053-1591/ac6be0ChoukseyA.VermaM.DevN.RahmanI.UpretiK.An investigation on the effect of curing conditions on the mechanical and microstructural properties of the geopolymer concreteMater. Res. Express2022955500310.1088/2053-1591/ac6be0Open DOI
Saranya, P., Nagarajan, P., Shashikala, A.P., Behaviour of GGBS-dolomite geopolymer concrete beam-column joints under monotonic loading, Structures, 2020, 25: 47–55. 10.1016/j.istruc.2020.02.021SaranyaP.NagarajanP.ShashikalaA.P.Behaviour of GGBS-dolomite geopolymer concrete beam-column joints under monotonic loadingStructures202025475510.1016/j.istruc.2020.02.021Open DOI