Uneingeschränkter Zugang

Physico-mechanical properties, structure, and phase composition of (BeO + TiO2)-ceramics containing TiO2 nanoparticles (0.1–2.0 wt.%)


Zitieren

Fig. 1

Micrographs of beryllium oxide powder crystals, with a specific surface of 11,000 cm2/g. (A) 2,000× magnification; (B) 500× magnification
Micrographs of beryllium oxide powder crystals, with a specific surface of 11,000 cm2/g. (A) 2,000× magnification; (B) 500× magnification

Fig. 2

Micrographs of micron titanium dioxide powders. (A) 5× magnification; (B) 20× magnification
Micrographs of micron titanium dioxide powders. (A) 5× magnification; (B) 20× magnification

Fig. 3

Micrograph of TiO2 nanoparticles obtained through the electric explosion of a conductor. (A) 400× magnification; (B) 100× magnification
Micrograph of TiO2 nanoparticles obtained through the electric explosion of a conductor. (A) 400× magnification; (B) 100× magnification

Fig. 4

Appearance of blanks sintered at 1,550°C, which are made, respectively, of ceramic to which TiO2 nanoparticles (1.0%) have been added and serial ceramic BT-30 material
Appearance of blanks sintered at 1,550°C, which are made, respectively, of ceramic to which TiO2 nanoparticles (1.0%) have been added and serial ceramic BT-30 material

Fig. 5

Graph indicating the dependence of the change in the microhardness of samples on the content of nanoparticles (0.1%–2.0%)
Graph indicating the dependence of the change in the microhardness of samples on the content of nanoparticles (0.1%–2.0%)

Fig. 6

Microstructure of BT-30 ceramic sample (BeO + 30 wt.% TiO2) obtained from the initial BeO and TiO2 powders having micron sizes: light – TiO2; dark – BeO. (A) Magnification 300×; (B) Magnification 900×
Microstructure of BT-30 ceramic sample (BeO + 30 wt.% TiO2) obtained from the initial BeO and TiO2 powders having micron sizes: light – TiO2; dark – BeO. (A) Magnification 300×; (B) Magnification 900×

Fig. 7

Distribution of particle by size and quantity. Microstructure of BT-30 ceramics
Distribution of particle by size and quantity. Microstructure of BT-30 ceramics

Fig. 8

Evolution of the microstructure of ceramics having a composition of 



BeO + 29.0%TiO2μm+1.0%TiO2nano
{\rm BeO}~+~29.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.0\% {\rm TiO}_2^{\rm nano}


 under the influence of various temperatures
Evolution of the microstructure of ceramics having a composition of BeO + 29.0%TiO2μm+1.0%TiO2nano {\rm BeO}~+~29.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.0\% {\rm TiO}_2^{\rm nano} under the influence of various temperatures

Fig. 9

Distribution of particle by size and quantity. Microstructure of 



BeO + 29.0%TiO2μm+1.0%TiO2nano
{\rm BeO}~+~29.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.0\% {\rm TiO}_2^{\rm nano}


 ceramics. T= 1,550°C
Distribution of particle by size and quantity. Microstructure of BeO + 29.0%TiO2μm+1.0%TiO2nano {\rm BeO}~+~29.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.0\% {\rm TiO}_2^{\rm nano} ceramics. T= 1,550°C

Fig. 10

Maps of phase distribution in ceramics of composition 



BeO + 28.5%TiO2μm+1.5%TiO2nano
{\rm BeO}~+~28.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.5\% {\rm TiO}_2^{\rm nano}


. T= 1,550°C
Maps of phase distribution in ceramics of composition BeO + 28.5%TiO2μm+1.5%TiO2nano {\rm BeO}~+~28.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.5\% {\rm TiO}_2^{\rm nano} . T= 1,550°C

Fig. 11

Point energy dispersive X-ray spectroscopy (EDS) analysis of the grain structure of 



BeO + 28.5%TiO2μm+1.5%TiO2nano
{\rm BeO}~+~28.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.5\% {\rm TiO}_2^{\rm nano}


 ceramics. T = 1,550°C
Point energy dispersive X-ray spectroscopy (EDS) analysis of the grain structure of BeO + 28.5%TiO2μm+1.5%TiO2nano {\rm BeO}~+~28.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.5\% {\rm TiO}_2^{\rm nano} ceramics. T = 1,550°C

Fig. 12

X-ray diffraction patterns of the studied ceramics
X-ray diffraction patterns of the studied ceramics

Fig. 13

The concentration of tetragonal and orthorhombic phases in the studied ceramics, depending on the number of introduced TiO2 nanoparticles at the sintering temperature of T = 1,550°C
The concentration of tetragonal and orthorhombic phases in the studied ceramics, depending on the number of introduced TiO2 nanoparticles at the sintering temperature of T = 1,550°C

Main characteristics of the TiO2 micron powder used

No. Name of indicators Indicator value
TC requirements, % Analysis results
1 Mass fraction of titanium dioxide, %, no less 99 99.5
2 Mass fraction of rutile form, %, no less 97 100
3 Mass fraction of iron compounds in terms of Fe2O3, %, no more 0.08 0.05
4 Mass fraction of phosphorus compounds in terms of P2O5, %, no more 0.03 0.03
5 Mass fraction of sulfur compounds in terms of SiO3, %, no more 0.03 0.01
6 Mass fraction for silicon compounds in terms of SiO2, %, no more 0.15 0.15
7 Mass fraction of “metallic iron”, %, no more 0.02 0.01
8 Specific surface, cm2/g, within 3,300–4,600 4,060

Change in apparent density from the sintering temperature of (BeO + TiO2)-ceramics with the addition of TiO2 nanoparticles within 0.1–2.0 wt.%

Batch No. Sintering temperature, °C Composition of the ceramics Density, g/cm3
BT-30 1,530 BeO+30.0%TiO2μm {\rm BeO} + 30.0\% {\rm TiO}_2^{\mu{}{\rm m}} 3.2
B1 1,520 BeO+29.9%TiO2μm+0.1%TiO2nano {\rm BeO} + 29.9\% {\rm TiO}_2^{\mu{}{\rm m}} + 0.1\%\ {\rm TiO}_2^{\rm nano} 3.11
BeO+29.5%TiO2μm+0.5%TiO2nano {\rm BeO} + 29.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 0.5\%\ {\rm TiO}_2^{\rm nano} 3.13
BeO+29.0%TiO2μm+1.0%TiO2nano {\rm BeO} + 29.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.0\%\ {\rm TiO}_2^{\rm nano} 3.15
BeO+28.5%TiO2μm+1.5%TiO2nano {\rm BeO} + 28.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.5\%\ {\rm TiO}_2^{\rm nano} 3.15
BeO+ 28.0%TiO2μm+2.0%TiO2nano {\rm BeO} +~28.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 2.0\%\ {\rm TiO}_2^{\rm nano} 3.16
B2 BeO+29.9%TiO2μm+0.1%TiO2nano {\rm BeO} + 29.9\% {\rm TiO}_2^{\mu{}{\rm m}} + 0.1\%\ {\rm TiO}_2^{\rm nano} 3.23
BeO+29.5%TiO2μm+0.5%TiO2nano {\rm BeO} + 29.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 0.5\%\ {\rm TiO}_2^{\rm nano} 3.23
BeO+29.0%TiO2μm+1.0%TiO2nano {\rm BeO} + 29.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.0\%\ {\rm TiO}_2^{\rm nano} 3.23
BeO+28.5%TiO2μm+1.5%TiO2nano {\rm BeO} + 28.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.5\%\ {\rm TiO}_2^{\rm nano} 3.22
BeO+28.0%TiO2μm+2.0%TiO2nano {\rm BeO} + 28.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 2.0\%\ {\rm TiO}_2^{\rm nano} 3.23
B3 BeO+29.9%TiO2μm+0.1%TiO2nano {\rm BeO} + 29.9\% {\rm TiO}_2^{\mu{}{\rm m}} + 0.1\%\ {\rm TiO}_2^{\rm nano} 3.22
BeO+29.5%TiO2μm+0.5%TiO2nano {\rm BeO} + 29.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 0.5\%\ {\rm TiO}_2^{\rm nano} 3.23
BeO+29.0%TiO2μm+1.0%TiO2nano {\rm BeO} + 29.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.0\%\ {\rm TiO}_2^{\rm nano} 3.22
BeO+28.5%TiO2μm+1.5%TiO2nano {\rm BeO} + 28.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.5\%\ {\rm TiO}_2^{\rm nano} 3.22
BeO+28.0%TiO2μm+2.0%TiO2nano {\rm BeO} + 28.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 2.0\%\ {\rm TiO}_2^{\rm nano} 3.22
B4 BeO+29.9%TiO2μm+0.1%TiO2nano {\rm BeO} + 29.9\% {\rm TiO}_2^{\mu{}{\rm m}} + 0.1\%\ {\rm TiO}_2^{\rm nano} 3.22
BeO+29.5%TiO2μm+0.5%TiO2nano {\rm BeO} + 29.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 0.5\% \ {\rm TiO}_2^{\rm nano} 3.23
BeO+29.0%TiO2μm+1.0%TiO2nano {\rm BeO} + 29.0\% {\rm TiO}_2^{\mu{}{\rm m}} +1.0\%\ {\rm TiO}_2^{\rm nano} 3.22
BeO+28.5%TiO2μm+1.5%TiO2nano {\rm BeO} + 28.5\% {\rm TiO}_2^{\mu{}{\rm m}} + 1.5\% \ {\rm TiO}_2^{\rm nano} 3.23
BeO+28.0%TiO2μm+2.0%TiO2nano {\rm BeO} + 28.0\% {\rm TiO}_2^{\mu{}{\rm m}} + 2.0\% \ {\rm TiO}_2^{\rm nano} 3.22

Water absorption, and open, total, and closed porosities of BeO ceramics, depending on the content of TiO2nano {\rm TiO}.2^{\rm nano} (0.1%–2.0%)

Batch No. Water absorption, % Porosity, %
Open Total Closed
BT-30 0.03 0.10 7.076 6.977
B1 0.06 0.187 5.92 5.73
B2 0.05 0.165 5.329 5.164
B3 0.07 0.211 5.329 5.118
B4 0.06 0.186 5.031 4.845
B5 0.07 0.217 4.126 3.909

The main characteristics of the used BeO powder grade “B2”

Characteristic, batch number b 67
Bulk density, ρo × 103 kg/m3 0.77
Specific surface S, cm2/g 11,000
Moisture, wt.% 0.08
Element-by-element impurities content, wt.% Boron 1.7 × 10−5
Silicon 7.3 × 10−3
Manganese 8.2 × 10−4
Ferrum 5.1 × 10−2
Magnesium 5.2 × 10−3
Chromium 1.0 × 10−2
Nickel 1.1 × 10−2
Aluminum 3.2 × 10−2
Copper 8.0 × 10−4
Zinc 7.5 × 10−3
Calcium 4.2 × 10−3
Silver 1.1 × 10−5
Cadmium 1.2 × 10−5
Lithium 6.7 × 10−4
Natrium 8.7 × 10−3
Amount of impurities, wt.% 0.14
eISSN:
2083-134X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, andere, Nanomaterialien, Funktionelle und Intelligente Materialien, Charakterisierung und Eigenschaften von Materialien