Al2O3-TiO2 coatings deposition by intermixed and double injection SPS concepts
, , , und
29. Apr. 2022
Über diesen Artikel
Online veröffentlicht: 29. Apr. 2022
Seitenbereich: 599 - 614
Eingereicht: 08. Feb. 2022
Akzeptiert: 30. März 2022
DOI: https://doi.org/10.2478/msp-2021-0046
Schlüsselwörter
© 2021 Monika Nowakowska et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Characteristic of suspensions used for the Al2O3-TiO2 coatings deposition
AT3_i | Al2O3 + 3 wt.% TiO2 | intermixed Al2O3 and TiO2, to have Al2O3 + 3 wt.% TiO2 | H2O | |
AT3_di | Al2O3 + 3 wt.% TiO2 | Al2O3 | TiO2 | H2O |
AT13_i | Al2O3 + 13 wt.% TiO2 | intermixed Al2O3 and TiO2, to have Al2O3 + 13 wt.% TiO2 | H2O | |
AT13_di | Al2O3 + 13 wt.% TiO2 | Al2O3 | TiO2 | H2O |
AT40_i | Al2O3 + 40 wt.% TiO2 | intermixed Al2O3 and TiO2, to have Al2O3 + 40 wt.% TiO2 | H2O | |
AT40_di | Al2O3 + 40 wt.% TiO2 | Al2O3 | TiO2 | H2O |
Deposition parameters of bond coat
austenitic stainless steel AISI 304/1.4301, 3 mm thick, diameter 25 mm; sand blasted before spraying (F36 grit, 500–600 μm mesh size) and sonicated with ethanol | |
NiCr 80-20, Amdry 4535; dried 3 h before spraying at 110°C | |
27 kW | |
radial, external | |
100 mm | |
SG-100, Praxair, Indianapolis, USA | |
15 g/min | |
400 mm/s | |
Ar/H2: 45/5 slpm | |
Ar 3.5 slpm |
Deposition parameters and thickness of top coat
25 | 25 | 25 | 25 | 25 | 25 | |
25 | 25 | 25 | 25 | 25 | 25 | |
100 | 100 | 100 | 100 | 100 | 100 | |
0.35 | 2×0.2 | 0.35 | 2×0.2 | 0.35 | 2×0.2 | |
30 | 30 | 30 | 30 | 30 | 30 | |
55.5 | 55.5 | 55.5 | 55.5 | 55.5 | 55.5 | |
500 | 500 | 500 | 500 | 500 | 500 | |
150 | 150 | 150 | 150 | 150 | 150 | |
120 | 2×37 | 120 | 2×37 | 120 | 2×37 | |
0.35 | 0.24 | 0.35 | 0.24 | 0.35 | 0.24 | |
250 | 250 | 250 | 250 | 250 | 250 | |
yes | yes | yes | yes | yes | yes | |
air | air | air | air | air | air | |
40 | 140 | 40 | 120 | 40 | 100 | |
120 | 420 | 120 | 360 | 120 | 300 | |
9.3 | 32.7 | 9.3 | 28 | 9.3 | 23.3 | |
338.2±16.9 | 241.5±8.2 | 360.9±16.7 | 296.7±5.8 | 316.2±10.9 | 287.6±8.4 | |
2.82±0.14 | 1.74±0.06 | 3.01±0.14 | 2.24±0.05 | 2.63±0.09 | 1.80±0.06 |
Comparison of the double injection and intermixed spraying
feedstock stability | + easier prevention of agglomeration and sedimentation of two feedstocks separately | − stability of a mixture (suspension/suspension; suspension/powder; suspension/solution precursor) may not be easily guaranteed |
waste | + minimized material loss – the suspension after spraying can be further stored and easily used for the next spraying | − waste remains, initial suspensions cannot be separated and used again |
spraying comprehensiveness | + it opens up the possibility for a precise control of the particle thermal history, the microstructure and phase composition of coatings |
+ easier optimization of spraying parameters for the injection of a single liquid |
tailoring of chemical composition | − difficult selection of suspension/solvent/powder/dispersing agents concentrations (especially when strong dilution is needed) | + easy tailoring of the feedstock chemical composition |
sprayability | − spraying is difficult in the case of low constituent content – there is a need to intensively dilute the suspensions; consequently, lots of energy is consumed for solvent evaporation, leading to a low process efficiency; + feasibility of the process | + the ratio of the feedstock composition may be easily adjusted, so the disadvantages of the double injection are easily omitted |