Uneingeschränkter Zugang

Delayed setting time for alkali-activated slag composites using activator containing SiO2 and Na2O


Zitieren

Kamath M, Prashant S, Kumar M. Micro-characterisation of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics. Constr Build Mater. 2021;277:122323. KamathM PrashantS KumarM Micro-characterisation of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics Constr Build Mater 2021 277 122323 10.1016/j.conbuildmat.2021.122323 Search in Google Scholar

Zhang B, Zhu H, Cheng Y, Huseien GF, Shah KW. Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: a critical review. Constr Build Mater. 2022;318:125993. ZhangB ZhuH ChengY HuseienGF ShahKW Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: a critical review Constr Build Mater 2022 318 125993 10.1016/j.conbuildmat.2021.125993 Search in Google Scholar

Korniejenko K, Frączek E, Pytlak E, Adamski M. Mechanical properties of geopolymer composites reinforced with natural fibers. Procedia Eng. 2016;151:388–93. KorniejenkoK FrączekE PytlakE AdamskiM Mechanical properties of geopolymer composites reinforced with natural fibers Procedia Eng 2016 151 388 93 10.1016/j.proeng.2016.07.395 Search in Google Scholar

Saha S, Rajasekaran C. Mechanical properties of recycled aggregate concrete produced with Portland pozzolana cement. Adv Concr Constr. 2016;4(1):27–35. SahaS RajasekaranC Mechanical properties of recycled aggregate concrete produced with Portland pozzolana cement Adv Concr Constr 2016 4 1 27 35 10.12989/acc.2016.4.1.027 Search in Google Scholar

Solanki P, Dasha B. Mechanical properties of concrete containing recycled materials. Adv Concr Constr. 2016;4(3):207–20. SolankiP DashaB Mechanical properties of concrete containing recycled materials Adv Concr Constr 2016 4 3 207 20 10.12989/acc.2016.4.3.207 Search in Google Scholar

Korniejenko K, Łach M, Mikuła J. Mechanical properties of raffia fibres reinforced geopolymer composite. In: Fangueiro R., Rana S, editors. Advances in natural fibre composites. Cham: Springer; 2018. pp. 135–144. KorniejenkoK ŁachM MikułaJ Mechanical properties of raffia fibres reinforced geopolymer composite In: FangueiroR. RanaS editors. Advances in natural fibre composites Cham Springer 2018 135 144 10.1007/978-3-319-64641-1_13 Search in Google Scholar

Chen K, Lin WT, Liu W. Microstructures and mechanical properties of sodium-silicate-activated slag/co-fired fly ash cementless composites. J Clean Prod. 2020;277:124025. ChenK LinWT LiuW Microstructures and mechanical properties of sodium-silicate-activated slag/co-fired fly ash cementless composites J Clean Prod 2020 277 124025 10.1016/j.jclepro.2020.124025 Search in Google Scholar

Hafez H, Kassim D, Kurda R, Silva RV, Brito J. Assessing the sustainability potential of alkali-activated concrete from electric arc furnace slag using the ECO2 framework. Constr Build Mater. 2021;281:122559. HafezH KassimD KurdaR SilvaRV BritoJ Assessing the sustainability potential of alkali-activated concrete from electric arc furnace slag using the ECO2 framework Constr Build Mater 2021 281 122559 10.1016/j.conbuildmat.2021.122559 Search in Google Scholar

Roy DM. Alkali activated cements: opportunities and challenges. Cem Concr Res. 1999;29(2):249–54. RoyDM Alkali activated cements: opportunities and challenges Cem Concr Res 1999 29 2 249 54 10.1016/S0008-8846(98)00093-3 Search in Google Scholar

Amer I, Kohail M, El-Feky MS, Rashad A, Khalaf MA. A review on alkali-activated slag concrete. Ain Shams Eng J. 2021;12(2):1475–99. AmerI KohailM El-FekyMS RashadA KhalafMA A review on alkali-activated slag concrete Ain Shams Eng J 2021 12 2 1475 99 10.1016/j.asej.2020.12.003 Search in Google Scholar

Awoyera P, Adesina A. A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud Constr Mater. 2019;11:e00268. AwoyeraP AdesinaA A critical review on application of alkali activated slag as a sustainable composite binder Case Stud Constr Mater 2019 11 e00268 10.1016/j.cscm.2019.e00268 Search in Google Scholar

Ho HL, Huang R, Hwang LC, Lin WT, Hsu HM. Waste-based pervious concrete for climate-resilient pavements. Materials. 2018;11:900. HoHL HuangR HwangLC LinWT HsuHM Waste-based pervious concrete for climate-resilient pavements Materials 2018 11 900 10.3390/ma11060900 Search in Google Scholar

Gong C, Yang N. Effect of phosphate on the hydration of alkaliactivated red mud-slag cementitious material. Cem Concr Res. 2000;30(7):1013–16. GongC YangN Effect of phosphate on the hydration of alkaliactivated red mud-slag cementitious material Cem Concr Res 2000 30 7 1013 16 10.1016/S0008-8846(00)00260-X Search in Google Scholar

Collins F, Sanjayan JG. Effect of pore size distribution on drying shrinkage properties of alkali-activated slag concrete. Cem Concr Res. 2000;30(9):1401–06. CollinsF SanjayanJG Effect of pore size distribution on drying shrinkage properties of alkali-activated slag concrete Cem Concr Res 2000 30 9 1401 06 10.1016/S0008-8846(00)00327-6 Search in Google Scholar

Parveen P, Singhala D. Development of mix design method for geopolymer concrete. Adv Concrete Constr. 2017;5(4):377–90. ParveenP SinghalaD Development of mix design method for geopolymer concrete Adv Concrete Constr 2017 5 4 377 90 Search in Google Scholar

Jiang D, Li X, Lv Y, Li C, Jiang W, Liu Z, et al. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer. Cem Concr Res. 2021;149:106581. JiangD LiX LvY LiC JiangW LiuZ Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer Cem Concr Res 2021 149 106581 10.1016/j.cemconres.2021.106581 Search in Google Scholar

Zhang B, Zhu H, Feng P, Zhang P. A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: effects of chemical additives. J Build Eng. 2022;49:104056. ZhangB ZhuH FengP ZhangP A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: effects of chemical additives J Build Eng 2022 49 104056 10.1016/j.jobe.2022.104056 Search in Google Scholar

Dener M, Karatas M, Mohabbi M. High temperature resistance of self compacting alkali activated slag/portland cement composite using lightweight aggregate. Constr Build Mater. 2021;290:123250. DenerM KaratasM MohabbiM High temperature resistance of self compacting alkali activated slag/portland cement composite using lightweight aggregate Constr Build Mater 2021 290 123250 10.1016/j.conbuildmat.2021.123250 Search in Google Scholar

Allahverdi A, Najafi Kani E, Esmaeilpoor S. Effects of silica modulus and alkali concentration on activation of blast-furnace slag. Iran J Mater Sci Eng. 2008;5(2):32–5. AllahverdiA Najafi KaniE EsmaeilpoorS Effects of silica modulus and alkali concentration on activation of blast-furnace slag Iran J Mater Sci Eng 2008 5 2 32 5 Search in Google Scholar

Shi Z, Shi C, Wan S, Zhang Z. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars. Cem Concr Res. 2018;111:104–15. ShiZ ShiC WanS ZhangZ Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars Cem Concr Res 2018 111 104 15 10.1016/j.cemconres.2018.06.005 Search in Google Scholar

Dener M, Karatas M, Mohabbi M. Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate. Constr Build Mater. 2021;304:124671. DenerM KaratasM MohabbiM Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate Constr Build Mater 2021 304 124671 10.1016/j.conbuildmat.2021.124671 Search in Google Scholar

Caijun S. Strength, pore structure and permeability of alkali activated slag mortars. Cem Concr Res. 1996;26(12):1789–99. CaijunS Strength, pore structure and permeability of alkali activated slag mortars Cem Concr Res 1996 26 12 1789 99 10.1016/S0008-8846(96)00174-3 Search in Google Scholar

Pavel K, Oleg P, Hryhorii V, Serhii L. The development of alkali-activated cement mixtures for fast rehabilitation and strengthening of concrete structures. Procedia Eng. 2017;195:142–6. PavelK OlegP HryhoriiV SerhiiL The development of alkali-activated cement mixtures for fast rehabilitation and strengthening of concrete structures Procedia Eng 2017 195 142 6 10.1016/j.proeng.2017.04.536 Search in Google Scholar

Gao X, Yu QL, Brouwers HJH. Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites. Ceram Int. 2017;43(15):12408–19. GaoX YuQL BrouwersHJH Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites Ceram Int 2017 43 15 12408 19 10.1016/j.ceramint.2017.06.108 Search in Google Scholar

Gao X, Yu QL, Lazaro A, Brouwers HJH. Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: reaction kinetics, gel structure and carbon footprint. Cem Concr Res. 2017;100:129–139. GaoX YuQL LazaroA BrouwersHJH Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: reaction kinetics, gel structure and carbon footprint Cem Concr Res 2017 100 129 139 10.1016/j.cemconres.2017.06.007 Search in Google Scholar

Fernandez-Jimenez A, Palomob JG, Puertas F. Alkali-activated slag mortars mechanical strength behaviour. Cem Concr Res. 1999;29(8):1313–21. Fernandez-JimenezA PalomobJG PuertasF Alkali-activated slag mortars mechanical strength behaviour Cem Concr Res 1999 29 8 1313 21 10.1016/S0008-8846(99)00154-4 Search in Google Scholar

Brough AR, Holloway M, Sykes J, Atkinson A. Sodium silicate based alkali-activator slag mortars, part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res. 2000;30(9):1375–9. BroughAR HollowayM SykesJ AtkinsonA Sodium silicate based alkali-activator slag mortars, part II. The retarding effect of additions of sodium chloride or malic acid Cem Concr Res 2000 30 9 1375 9 10.1016/S0008-8846(00)00356-2 Search in Google Scholar

Zhang J, Ma Y, Zheng J, Hu J, Fu J, Zhang Z, et al. Chloride diffusion in alkali-activated fly ash/slag concretes: role of slag content, water/binder ratio, alkali content and sand-aggregate ratio. Constr Build Mater. 2020;261:119940. ZhangJ MaY ZhengJ HuJ FuJ ZhangZ Chloride diffusion in alkali-activated fly ash/slag concretes: role of slag content, water/binder ratio, alkali content and sand-aggregate ratio Constr Build Mater 2020 261 119940 10.1016/j.conbuildmat.2020.119940 Search in Google Scholar

Chang JJ. A study on the setting characteristics of sodium silicate-activated slag pastes. Cem Concr Res. 2003;33(7):1005–11. ChangJJ A study on the setting characteristics of sodium silicate-activated slag pastes Cem Concr Res 2003 33 7 1005 11 10.1016/S0008-8846(02)01096-7 Search in Google Scholar

Tong S, Yuqi Z, Qiang W. Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems. Constr Build Mater. 2021;272:121647. TongS YuqiZ QiangW Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems Constr Build Mater 2021 272 121647 10.1016/j.conbuildmat.2020.121647 Search in Google Scholar

Choi S, Lee KM. Influence of Na2O content and Ms (SiO2/Na2O) of alkaline activator on workability and setting of alkali-activated slag paste. Materials. 2019;12(13):2072. ChoiS LeeKM Influence of Na2O content and Ms (SiO2/Na2O) of alkaline activator on workability and setting of alkali-activated slag paste Materials 2019 12 13 2072 10.3390/ma12132072 Search in Google Scholar

Collins F, Sanjayan JG. Microcracking and strength development of alkali activated slag concrete. Cem Concr Compos. 2001;23(4–5):345–52. CollinsF SanjayanJG Microcracking and strength development of alkali activated slag concrete Cem Concr Compos 2001 23 4–5 345 52 10.1016/S0958-9465(01)00003-8 Search in Google Scholar

Yang LY, Jia ZJ, Zhang YM, Dai JG. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cem Concr Compos. 2015;57:1–7. YangLY JiaZJ ZhangYM DaiJG Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes Cem Concr Compos 2015 57 1 7 10.1016/j.cemconcomp.2014.11.009 Search in Google Scholar

Opiso EM, Sato T, Otake T. Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash. Adv Concr Constr. 2017;5(3):289–301. OpisoEM SatoT OtakeT Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash Adv Concr Constr 2017 5 3 289 301 Search in Google Scholar

Atiş CD, Bilim C, Çelik Ö, Karahan O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23(1):548–55. AtişCD BilimC ÇelikÖ KarahanO Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar Constr Build Mater 2009 23 1 548 55 10.1016/j.conbuildmat.2007.10.011 Search in Google Scholar

Mastali M, Kinnunen P, Dalvand A, Firouz RM, Illikainen M. Drying shrinkage in alkali-activated binders – a critical review. Constr Build Mater. 2018;190:533–50. MastaliM KinnunenP DalvandA FirouzRM IllikainenM Drying shrinkage in alkali-activated binders – a critical review Constr Build Mater 2018 190 533 50 10.1016/j.conbuildmat.2018.09.125 Search in Google Scholar

Alharbi N, Varela B, Hailstone R. Alkali-activated slag characterization by scanning electron microscopy, X-ray microanalysis and nuclear magnetic resonance spectroscopy. Mater Charact. 2020;168:110504. AlharbiN VarelaB HailstoneR Alkali-activated slag characterization by scanning electron microscopy, X-ray microanalysis and nuclear magnetic resonance spectroscopy Mater Charact 2020 168 110504 10.1016/j.matchar.2020.110504 Search in Google Scholar

Paradiso P, Santos RL, Horta RB, Lopes JNC, Ferreira PJ, Colaço R. Formation of nanocrystalline tobermorite in calcium silicate binders with low C/S ratio. Acta Mater. 2018;152:7–15. ParadisoP SantosRL HortaRB LopesJNC FerreiraPJ ColaçoR Formation of nanocrystalline tobermorite in calcium silicate binders with low C/S ratio Acta Mater 2018 152 7 15 10.1016/j.actamat.2018.04.006 Search in Google Scholar

eISSN:
2083-134X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, andere, Nanomaterialien, Funktionelle und Intelligente Materialien, Charakterisierung und Eigenschaften von Materialien