Uneingeschränkter Zugang

Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures


Zitieren

Habel K, Viviani M, Denarié E, Brühwiler E. Development of the mechanical properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC). Cem Concr Res. 2006;36:1362–70. https://doi.org/10.1016/J.CEMCONRES.2006.03.009 HabelK VivianiM DenariéE BrühwilerE Development of the mechanical properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Cem Concr Res 2006 36 1362 70 https://doi.org/10.1016/J.CEMCONRES.2006.03.009 10.1016/j.cemconres.2006.03.009 Search in Google Scholar

Ahmad S, Rasul M, Adekunle SK, Al-Dulaijan SU, Maslehuddin M, Ali SI. Mechanical properties of steel fiber-reinforced UHPC mixtures exposed to elevated temperature: Effects of exposure duration and fiber content. Compos Part B. 2019;168:291–301. https://doi.org/10.1016/J.COMPOSITESB.2018.12.083 AhmadS RasulM AdekunleSK Al-DulaijanSU MaslehuddinM AliSI Mechanical properties of steel fiber-reinforced UHPC mixtures exposed to elevated temperature: Effects of exposure duration and fiber content Compos Part B 2019 168 291 301 https://doi.org/10.1016/J.COMPOSITESB.2018.12.083 10.1016/j.compositesb.2018.12.083 Search in Google Scholar

Guler S, Yavuz D, Korkut F, Ashour A. Strength prediction models for steel, synthetic, and hybrid fiber reinforced concretes. Struct Concr. 2019;20:428–45. https://doi.org/10.1002/SUCO.201800088 GulerS YavuzD KorkutF AshourA Strength prediction models for steel, synthetic, and hybrid fiber reinforced concretes Struct Concr 2019 20 428 45 https://doi.org/10.1002/SUCO.201800088 10.1002/suco.201800088 Search in Google Scholar

Abadel A, Abbas H, Almusallam T, Al-Salloum Y, Siddiqui N. Mechanical properties of hybrid fibre-reinforced concrete – analytical modelling and experimental behaviour. Mag Concr Res. 2016;68:823–43. https://doi.org/10.1680/JMACR.15.00276 AbadelA AbbasH AlmusallamT Al-SalloumY SiddiquiN Mechanical properties of hybrid fibre-reinforced concrete – analytical modelling and experimental behaviour Mag Concr Res 2016 68 823 43 https://doi.org/10.1680/JMACR.15.00276 10.1680/jmacr.15.00276 Search in Google Scholar

Guler S, Yavuz D, Aydın M. Hybrid fiber reinforced concrete-filled square stub columns under axial compression. Eng Struct. 2019;198:109504. https://doi.org/10.1016/J.ENGSTRUCT.2019.109504 GulerS YavuzD AydınM Hybrid fiber reinforced concrete-filled square stub columns under axial compression Eng Struct 2019 198 109504. https://doi.org/10.1016/J.ENGSTRUCT.2019.109504 10.1016/j.engstruct.2019.109504 Search in Google Scholar

Guler S, Akbulut ZF, Siad H, Lachemi M. Effect of macro polypropylene, polyamide and steel fibers on the residual properties of SCC at ambient and elevated temperatures. Constr Build Mater. 2021;289:123154 https://doi.org/10.1016/J.CONBUILDMAT.2021.123154 GulerS AkbulutZF SiadH LachemiM Effect of macro polypropylene, polyamide and steel fibers on the residual properties of SCC at ambient and elevated temperatures Constr Build Mater 2021 289 123154 https://doi.org/10.1016/J.CONBUILDMAT.2021.123154 10.1016/j.conbuildmat.2021.123154 Search in Google Scholar

Abadel A, Elsanadedy H, Almusallam T, Alaskar A, Abbas H, Al-Salloum Y. Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes. Eur J Environ Civ Eng. 2021;1–20. https://doi.org/10.1080/19648189.2021.1960898 AbadelA ElsanadedyH AlmusallamT AlaskarA AbbasH Al-SalloumY Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes Eur J Environ Civ Eng 2021 1 20 https://doi.org/10.1080/19648189.2021.1960898 10.1080/19648189.2021.1960898 Search in Google Scholar

Poon CS, Azhar S, Anson M, Wong YL. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cem Concr Res. 2001;31:1291–300. https://doi.org/10.1016/S0008-8846(01)00580-4 PoonCS AzharS AnsonM WongYL Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures Cem Concr Res 2001 31 1291 300 https://doi.org/10.1016/S0008-8846(01)00580-4 10.1016/S0008-8846(01)00580-4 Search in Google Scholar

Bastami M, Chaboki-Khiabani A, Baghbadrani M, Kordi M. Performance of high strength concretes at elevated temperatures. Sci Iran. 2011;18:1028–36. https://doi.org/10.1016/J.SCIENT.2011.09.001 BastamiM Chaboki-KhiabaniA BaghbadraniM KordiM Performance of high strength concretes at elevated temperatures Sci Iran 2011 18 1028 36 https://doi.org/10.1016/J.SCIENT.2011.09.001 10.1016/j.scient.2011.09.001 Search in Google Scholar

Khan MS, Abbas H. Performance of concrete subjected to elevated temperature. Eur J Environ Civ Eng. 2015;20:532–43. https://doi.org/10.1080/19648189.2015.1053152 KhanMS AbbasH Performance of concrete subjected to elevated temperature Eur J Environ Civ Eng 2015 20 532 43 https://doi.org/10.1080/19648189.2015.1053152 10.1080/19648189.2015.1053152 Search in Google Scholar

Kalifa P, Chéné G, Gallé C. High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure. Cem Concr Res. 2001;31:1487–99. https://doi.org/10.1016/S0008-8846(01)00596-8 KalifaP ChénéG GalléC High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure Cem Concr Res 2001 31 1487 99 https://doi.org/10.1016/S0008-8846(01)00596-8 10.1016/S0008-8846(01)00596-8 Search in Google Scholar

Bangi MR, Horiguchi T. Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cem Concr Res. 2012;42:459–66. https://doi.org/10.1016/J.CEMCONRES.2011.11.014 BangiMR HoriguchiT Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures Cem Concr Res 2012 42 459 66 https://doi.org/10.1016/J.CEMCONRES.2011.11.014 10.1016/j.cemconres.2011.11.014 Search in Google Scholar

Almusallam T, Ibrahim SM, Al-Salloum Y, Abadel A, Abbas H. Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cem Concr Compos. 2016;74:201–17. https://doi.org/10.1016/J.CEMCONCOMP.2016.10.002 AlmusallamT IbrahimSM Al-SalloumY AbadelA AbbasH Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete Cem Concr Compos 2016 74 201 17 https://doi.org/10.1016/J.CEMCONCOMP.2016.10.002 10.1016/j.cemconcomp.2016.10.002 Search in Google Scholar

Yermak N, Pliya P, Beaucour AL, Simon A, Noumowé A. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties. Constr Build Mater. 2017;132:240–50. https://doi.org/10.1016/J.CONBUILDMAT.2016.11.120 YermakN PliyaP BeaucourAL SimonA NoumowéA Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties Constr Build Mater 2017 132 240 50 https://doi.org/10.1016/J.CONBUILDMAT.2016.11.120 10.1016/j.conbuildmat.2016.11.120 Search in Google Scholar

Noumowé A, Carré H, Daoud A, Toutanji H. High-strength self-compacting concrete exposed to fire test. J Mater Civ Eng. 2006;18:754–8. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(754) NoumowéA CarréH DaoudA ToutanjiH High-strength self-compacting concrete exposed to fire test J Mater Civ Eng 2006 18 754 8 https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(754) 10.1061/(ASCE)0899-1561(2006)18:6(754) Search in Google Scholar

Phan L. Spalling and mechanical properties of high strength concrete at high temperature. Actes Des Journées Scientifiques Du LCPC. 2007:1595–608. PhanL Spalling and mechanical properties of high strength concrete at high temperature Actes Des Journées Scientifiques Du LCPC 2007 1595 608 Search in Google Scholar

Chan SY, Peng GF, Chan JK. Comparison between high strength concrete and normal strength concrete subjected to high temperature. Mater Struct. 1996;29:616–9. https://doi.org/10.1007/BF02485969 ChanSY PengGF ChanJK Comparison between high strength concrete and normal strength concrete subjected to high temperature Mater Struct 1996 29 616 9 https://doi.org/10.1007/BF02485969 10.1007/BF02485969 Search in Google Scholar

Aslani F, Bastami M. Constitutive relationships for normal-and high-strength concrete at elevated temperatures. ACI Mater J. 2011;108:355–64. https://doi.org/10.14359/51683106 AslaniF BastamiM Constitutive relationships for normal-and high-strength concrete at elevated temperatures ACI Mater J 2011 108 355 64 https://doi.org/10.14359/51683106 10.14359/51683106 Search in Google Scholar

Lau A, Anson M. Effect of high temperatures on high performance steel fibre reinforced concrete. Cem Concr Res. 2006;36:1698–707. https://doi.org/10.1016/J.CEMCONRES.2006.03.024 LauA AnsonM Effect of high temperatures on high performance steel fibre reinforced concrete Cem Concr Res 2006 36 1698 707 https://doi.org/10.1016/J.CEMCONRES.2006.03.024 10.1016/j.cemconres.2006.03.024 Search in Google Scholar

Varona FB, Baeza FJ, Bru D, Ivorra S. Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete. Constr Build Mater. 2018;159:73–82. https://doi.org/10.1016/J.CONBUILDMAT.2017.10.129 VaronaFB BaezaFJ BruD IvorraS Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete Constr Build Mater 2018 159 73 82 https://doi.org/10.1016/J.CONBUILDMAT.2017.10.129 10.1016/j.conbuildmat.2017.10.129 Search in Google Scholar

Elsanadedy HM, Al-Salloum YA, Alsayed SH, Iqbal RA. Experimental and numerical investigation of size effects in FRP-wrapped concrete columns. Constr Build Mater. 2012;29:56–72. https://doi.org/10.1016/J.CONBUILDMAT.2011.10.025 ElsanadedyHM Al-SalloumYA AlsayedSH IqbalRA Experimental and numerical investigation of size effects in FRP-wrapped concrete columns Constr Build Mater 2012 29 56 72 https://doi.org/10.1016/J.CONBUILDMAT.2011.10.025 10.1016/j.conbuildmat.2011.10.025 Search in Google Scholar

Al-Salloum YA, Al-Amri GS, Siddiqui NA, Almusallam TH, Abbas H. Effectiveness of CFRP strengthening in improving cyclic compression response of slender RC columns. J Compos Constr. 2018;22:04018009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000842 Al-SalloumYA Al-AmriGS SiddiquiNA AlmusallamTH AbbasH Effectiveness of CFRP strengthening in improving cyclic compression response of slender RC columns J Compos Constr 2018 22 04018009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000842 10.1061/(ASCE)CC.1943-5614.0000842 Search in Google Scholar

Thériault M, Neale KW. Design equations for axially loaded reinforced concrete columns strengthened with fibre reinforced polymer wraps. Can J Civ Eng. 2011;27:1011–20. https://doi.org/10.1139/L00-019 ThériaultM NealeKW Design equations for axially loaded reinforced concrete columns strengthened with fibre reinforced polymer wraps Can J Civ Eng 2011 27 1011 20 https://doi.org/10.1139/L00-019 10.1139/l00-019 Search in Google Scholar

Demers M, Neale KW. Confinement of reinforced concrete columns with fibre-reinforced composite sheets - an experimental study. Can J Civ Eng. 2011;26:226–41. https://doi.org/10.1139/L98-067 DemersM NealeKW Confinement of reinforced concrete columns with fibre-reinforced composite sheets - an experimental study Can J Civ Eng 2011 26 226 41 https://doi.org/10.1139/L98-067 10.1139/l98-067 Search in Google Scholar

Al-Salloum YA, Almusallam TH, Elsanadedy HM, Iqbal RA. Effect of elevated temperature environments on the residual axial capacity of RC columns strengthened with different techniques. Constr Build Mater. 2016;115:345–61. https://doi.org/10.1016/J.CONBUILDMAT.2016.04.041 Al-SalloumYA AlmusallamTH ElsanadedyHM IqbalRA Effect of elevated temperature environments on the residual axial capacity of RC columns strengthened with different techniques Constr Build Mater 2016 115 345 61 https://doi.org/10.1016/J.CONBUILDMAT.2016.04.041 10.1016/j.conbuildmat.2016.04.041 Search in Google Scholar

Abadel AA, Khan MI, Masmoudi R. Axial capacity and stiffness of post-heated circular and square columns strengthened with carbon fiber reinforced polymer jackets. Structures. 2021;33:2599–610. https://doi.org/10.1016/J.ISTRUC.2021.05.081 AbadelAA KhanMI MasmoudiR Axial capacity and stiffness of post-heated circular and square columns strengthened with carbon fiber reinforced polymer jackets Structures 2021 33 2599 610 https://doi.org/10.1016/J.ISTRUC.2021.05.081 10.1016/j.istruc.2021.05.081 Search in Google Scholar

Alrshoudi F, Abbas H, Abadel A, Albidah A, Altheeb A, Al-Salloum Y. Compression behavior and modeling of FRP-confined high strength geopolymer concrete. Constr Build Mater. 2021;283:122759. https://doi.org/10.1016/J.CONBUILDMAT.2021.122759 AlrshoudiF AbbasH AbadelA AlbidahA AltheebA Al-SalloumY Compression behavior and modeling of FRP-confined high strength geopolymer concrete Constr Build Mater 2021 283 122759. https://doi.org/10.1016/J.CONBUILDMAT.2021.122759 10.1016/j.conbuildmat.2021.122759 Search in Google Scholar

Mandal S, Hoskin A, Fam A. Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets. Struct J. 2005;102:383–92. https://doi.org/10.14359/14409 MandalS HoskinA FamA Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets Struct J 2005 102 383 92 https://doi.org/10.14359/14409 10.14359/14409 Search in Google Scholar

Cui C, Sheikh SA. Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers. J Compos Constr. 2010;14:553–61. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116 CuiC SheikhSA Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers J Compos Constr 2010 14 553 61 https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116 10.1061/(ASCE)CC.1943-5614.0000116 Search in Google Scholar

Zohrevand P, Mirmiran A. Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers. J Mater Civ Eng. 2011;23:1727–34. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000324 ZohrevandP MirmiranA Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers J Mater Civ Eng 2011 23 1727 34 https://doi.org/10.1061/(ASCE)MT.1943-5533.0000324 10.1061/(ASCE)MT.1943-5533.0000324 Search in Google Scholar

Saiidi MS, O'Brien M, Sadrossadat-Zadeh M. Cyclic response of concrete bridge columns using superelastic nitinol and bendable concrete. Struct J. 2009;106:69–77. https://doi.org/10.14359/56285 SaiidiMS O'BrienM Sadrossadat-ZadehM Cyclic response of concrete bridge columns using superelastic nitinol and bendable concrete Struct J 2009 106 69 77 https://doi.org/10.14359/56285 10.14359/56285 Search in Google Scholar

Wang W, Wu C, Liu Z, Si H. Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined with FRP. Compos Struct. 2018;204:419–37. https://doi.org/10.1016/J.COMPSTRUCT.2018.07.102 WangW WuC LiuZ SiH Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined with FRP Compos Struct 2018 204 419 37 https://doi.org/10.1016/J.COMPSTRUCT.2018.07.102 10.1016/j.compstruct.2018.07.102 Search in Google Scholar

Lam L, Huang L, Xie JH, Chen JF. Compressive behavior of ultra-high performance concrete confined with FRP. Compos Struct. 2021;274:114321. https://doi.org/10.1016/J.COMPSTRUCT.2021.114321 LamL HuangL XieJH ChenJF Compressive behavior of ultra-high performance concrete confined with FRP Compos Struct 2021 274 114321. https://doi.org/10.1016/J.COMPSTRUCT.2021.114321 10.1016/j.compstruct.2021.114321 Search in Google Scholar

Khan MS, Prasad J, Abbas H. Shear strength of RC beams subjected to cyclic thermal loading. Constr Build Mater. 2010;24:1869–77. https://doi.org/10.1016/J.CONBUILDMAT.2010.04.016 KhanMS PrasadJ AbbasH Shear strength of RC beams subjected to cyclic thermal loading Constr Build Mater 2010 24 1869 77 https://doi.org/10.1016/J.CONBUILDMAT.2010.04.016 10.1016/j.conbuildmat.2010.04.016 Search in Google Scholar

Khan MS, Prasad J, Abbas H. Bond strength of RC beams subjected to cyclic thermal loading. Constr Build Mater. 2013;38:644–57. https://doi.org/10.1016/J.CONBUILDMAT.2012.09.018 KhanMS PrasadJ AbbasH Bond strength of RC beams subjected to cyclic thermal loading Constr Build Mater 2013 38 644 57 https://doi.org/10.1016/J.CONBUILDMAT.2012.09.018 10.1016/j.conbuildmat.2012.09.018 Search in Google Scholar

ISO. Fire-resistance tests – elements of building construction – part 1: General requirements. vol. ISO 834-1: 1999. ISO Fire-resistance tests – elements of building construction – part 1: General requirements vol. ISO 834-1: 1999 Search in Google Scholar

ASTM-C39. Standard test method for compressive strength of cylindrical concrete. Annual Book of ASTM Standards 2010. https://doi.org/D.O.I:10.1520/C0039_C0039M-10 ASTM-C39 Standard test method for compressive strength of cylindrical concrete Annual Book of ASTM Standards 2010 https://doi.org/D.O.I:10.1520/C0039_C0039M-10 Search in Google Scholar

Komonen J, Penttala V. Effects of high temperature on the pore structure and strength of plain and polypropylene fiber reinforced cement pastes. Fire Technol. 2003;39:23–34. https://doi.org/10.1023/A:1021723126005 KomonenJ PenttalaV Effects of high temperature on the pore structure and strength of plain and polypropylene fiber reinforced cement pastes Fire Technol 2003 39 23 34 https://doi.org/10.1023/A:1021723126005 10.1023/A:1021723126005 Search in Google Scholar

eISSN:
2083-134X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, andere, Nanomaterialien, Funktionelle und Intelligente Materialien, Charakterisierung und Eigenschaften von Materialien