Uneingeschränkter Zugang

Formability of laser welded steel/magnesium dissimilar metal with Sn powder-adhesive interlayer


Zitieren

Liu L, Wang S, Zhao L. Study on the dissimilar magnesium alloy and copper lap joint by TIG welding. Mater Sci Eng A. 2008;476(1–2):206–9. https://doi.org/10.1016/j.msea.2007.04.089 LiuL WangS ZhaoL Study on the dissimilar magnesium alloy and copper lap joint by TIG welding Mater Sci Eng A 2008 476 1–2 206 9 https://doi.org/10.1016/j.msea.2007.04.08910.1016/j.msea.2007.04.089 Search in Google Scholar

Tang B, Li SS, Wang XS, Zeng DB, Wu R. An investigation on hot-crack mechanism of Ca addition into AZ91D alloy. J Mater Sci. 2005;40(11):2931–6. https://doi.org/10.1007/s10853-005-2440-7 TangB LiSS WangXS ZengDB WuR An investigation on hot-crack mechanism of Ca addition into AZ91D alloy J Mater Sci 2005 40 11 2931 6 https://doi.org/10.1007/s10853-005-2440-710.1007/s10853-005-2440-7 Search in Google Scholar

Ferkel H, Mordike BL. Magnesium strengthened by SiC nanoparticles. Mater Sci Eng A. 2001;298(1–2):193–199. https://doi.org/10.1016/s0921-5093(00)01283-1 FerkelH MordikeBL Magnesium strengthened by SiC nanoparticles Mater Sci Eng A 2001 298 1–2 193 199 https://doi.org/10.1016/s0921-5093(00)01283-110.1016/S0921-5093(00)01283-1 Search in Google Scholar

Zijie F, Liangjin G, Ruiyi SU, TJJ.o.A.S. University, Energy. Research and development of automotive lightweight technology. J Automot Saf Energy. 2014; https://doi.org/10.3969/j.issn.1674-8484.2014.01.001 ZijieF LiangjinG RuiyiSU TJJ.o.A.S. University, Energy Research and development of automotive lightweight technology J Automot Saf Energy 2014 https://doi.org/10.3969/j.issn.1674-8484.2014.01.001 Search in Google Scholar

Kulekci MK. Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol. 2008;39(9–10):851–65. https://doi.org/10.1007/s00170-007-1279-2 KulekciMK Magnesium and its alloys applications in automotive industry Int J Adv Manuf Technol 2008 39 9–10 851 65 https://doi.org/10.1007/s00170-007-1279-210.1007/s00170-007-1279-2 Search in Google Scholar

Tan C, Song X, Meng S, Chen B, Li L, Feng J. Laser welding-brazing of Mg to stainless steel: joining characteristics, interfacial microstructure, and mechanical properties. Int J Adv Manuf Technol. 2016;86(1–4):203–13. https://doi.org/10.1007/s00170-015-8165-0 TanC SongX MengS ChenB LiL FengJ Laser welding-brazing of Mg to stainless steel: joining characteristics, interfacial microstructure, and mechanical properties Int J Adv Manuf Technol 2016 86 1–4 203 13 https://doi.org/10.1007/s00170-015-8165-010.1007/s00170-015-8165-0 Search in Google Scholar

Song G, Li T, Yu J, Liu L. A review of bonding immiscible Mg/Steel dissimilar metals. Materials. 2018;11(12): https://doi.org/10.3390/ma11122515 SongG LiT YuJ LiuL A review of bonding immiscible Mg/Steel dissimilar metals Materials 2018 11 12 https://doi.org/10.3390/ma1112251510.3390/ma11122515631703030544956 Search in Google Scholar

Jana S, Hovanski Y, Grant GJ. Friction stir lap welding of magnesium alloy to steel: a preliminary investigation. Metall Mater Trans A Phys Metall Mater Sci. 2010;41A(12):3173–82. https://doi.org/10.1007/s11661-010-0399-8 JanaS HovanskiY GrantGJ Friction stir lap welding of magnesium alloy to steel: a preliminary investigation Metall Mater Trans A Phys Metall Mater Sci 2010 41A 12 3173 82 https://doi.org/10.1007/s11661-010-0399-810.1007/s11661-010-0399-8 Search in Google Scholar

Chen YC, Nakata K. Effect of surface states of steel on microstructure and mechanical properties of lap joints of magnesium alloy and steel by friction stir welding. Sci Technol Welding Joining. 2010;15(4):293–8. https://doi.org/10.1179/136217109x12568132624325 ChenYC NakataK Effect of surface states of steel on microstructure and mechanical properties of lap joints of magnesium alloy and steel by friction stir welding Sci Technol Welding Joining 2010 15 4 293 8 https://doi.org/10.1179/136217109x1256813262432510.1179/136217109X12568132624325 Search in Google Scholar

Sahu S, Thorat O, Mahto RP, Pal SK, Srirangam P. A review and case study on mechanical properties and microstructure evolution in magnesium-steel friction stir welding. In: Joshi VV, Jordon JB, Orlov D, Neelameggham NR, editors. Magnesium technology. 2019. pp. 101–9. https://doi.org10.1007/978-3-030-05789-3_17 SahuS ThoratO MahtoRP PalSK SrirangamP A review and case study on mechanical properties and microstructure evolution in magnesium-steel friction stir welding In: JoshiVV JordonJB OrlovD NeelamegghamNR editors. Magnesium technology 2019 101 9 https://doi.org10.1007/978-3-030-05789-3_1710.1007/978-3-030-05789-3_17 Search in Google Scholar

ÇEtinarslan CS, Sahin M, Genç SK, Sevil CJ. Mechanical and metallurgical properties of ionnitrided austenitic-stainless steel welds. Mater Sci-Pol. 2012;30(4):303–12. https://doi.org/10.2478/s13536-012-0052-x ÇEtinarslanCS SahinM GençSK SevilCJ Mechanical and metallurgical properties of ionnitrided austenitic-stainless steel welds Mater Sci-Pol 2012 30 4 303 12 https://doi.org/10.2478/s13536-012-0052-x10.2478/s13536-012-0052-x Search in Google Scholar

Elthalabawy WM, Khan TI. Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer. Mater Charact. 2010;61(7):703–12. https://doi.org/10.1016/j.matchar.2010.04.001 ElthalabawyWM KhanTI Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer Mater Charact 2010 61 7 703 12 https://doi.org/10.1016/j.matchar.2010.04.00110.1016/j.matchar.2010.04.001 Search in Google Scholar

YöNetken A, Çakmakkaya M, Erol A, Talaş Ş. Diffusion bonding of electroless Ni plated WC composite to Cu and AISI 316 stainless steel. Mater Sci-Pol. 2011;29(1):15–21. https://doi.org/10.2478/s13536-011-0004-x YöNetkenA ÇakmakkayaM ErolA TalaşŞ Diffusion bonding of electroless Ni plated WC composite to Cu and AISI 316 stainless steel Mater Sci-Pol 2011 29 1 15 21 https://doi.org/10.2478/s13536-011-0004-x10.2478/s13536-011-0004-x Search in Google Scholar

Patel VK, Bhole SD, Chen DL. Characterization of ultrasonic spot welded joints of Mg-to-galvanized and ungalvanized steel with a tin interlayer. J Mater Process Technol. 2014;214(4):811–7. https://doi.org/10.1016/j.jmatprotec.2013.11.028 PatelVK BholeSD ChenDL Characterization of ultrasonic spot welded joints of Mg-to-galvanized and ungalvanized steel with a tin interlayer J Mater Process Technol 2014 214 4 811 7 https://doi.org/10.1016/j.jmatprotec.2013.11.02810.1016/j.jmatprotec.2013.11.028 Search in Google Scholar

Chen J, Lim YC, Leonard D, Huang H, Feng Z, Sun X. In situ and post-mortem characterizations of ultrasonic spot welded AZ31B and coated dual phase 590 steel joints. Metals. 2020;10(7): https://doi.org/10.3390/met10070899 ChenJ LimYC LeonardD HuangH FengZ SunX In situ and post-mortem characterizations of ultrasonic spot welded AZ31B and coated dual phase 590 steel joints Metals 2020 10 7 https://doi.org/10.3390/met1007089910.3390/met10070899 Search in Google Scholar

Manladan SM, Yusof F, Ramesh S, Zhang Y, Luo Z, Ling Z. Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints. J Mater Process Technol. 2017;250:45–54. https://doi.org/10.1016/j.jmatprotec.2017.07.006 ManladanSM YusofF RameshS ZhangY LuoZ LingZ Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints J Mater Process Technol 2017 250 45 54 https://doi.org/10.1016/j.jmatprotec.2017.07.00610.1016/j.jmatprotec.2017.07.006 Search in Google Scholar

Wang XY, Sun DQ, Sun Y. Influence of Cu-interlayer thickness on microstructures and mechanical properties of MIG-Welded Mg-steel joints. J Mater Eng Perform. 2016;25(3)::910–20. https://doi.org/10.1007/s11665-016-1945-3 WangXY SunDQ SunY Influence of Cu-interlayer thickness on microstructures and mechanical properties of MIG-Welded Mg-steel joints J Mater Eng Perform 2016 25 3 910 20 https://doi.org/10.1007/s11665-016-1945-310.1007/s11665-016-1945-3 Search in Google Scholar

Liu LM, Zhao X. Study on the weld joint of Mg alloy and steel by laser-GTA hybrid welding. Mater Charact. 2008;59(9):1279–84. https://doi.org/10.1016/j.matchar.2007.10.012 LiuLM ZhaoX Study on the weld joint of Mg alloy and steel by laser-GTA hybrid welding Mater Charact 2008 59 9 1279 84 https://doi.org/10.1016/j.matchar.2007.10.01210.1016/j.matchar.2007.10.012 Search in Google Scholar

Song G, Li T, Chen L. The mechanical properties and interface bonding mechanism of immiscible Mg/steel by laser-tungsten inert gas welding with filler wire. Mater Sci Eng A. 2018;736:306–15. https://doi.org/10.1016/j.msea.2018.08.078 SongG LiT ChenL The mechanical properties and interface bonding mechanism of immiscible Mg/steel by laser-tungsten inert gas welding with filler wire Mater Sci Eng A 2018 736 306 15 https://doi.org/10.1016/j.msea.2018.08.07810.1016/j.msea.2018.08.078 Search in Google Scholar

Song G, Yu J, Li T, Wang J, Liu L. Effect of laser-GTAW hybrid welding heat input on the performance of Mg/Steel butt joint. J Manuf Process. 2018;31:131–8. https://doi.org/10.1016/j.jmapro.2017.09.029 SongG YuJ LiT WangJ LiuL Effect of laser-GTAW hybrid welding heat input on the performance of Mg/Steel butt joint J Manuf Process 2018 31 131 8 https://doi.org/10.1016/j.jmapro.2017.09.02910.1016/j.jmapro.2017.09.029 Search in Google Scholar

Popoola PAI, Pityana SL, Fedotova T, Popoola OM. Nd: YAG laser treatment of aluminium –C TiB2 coated: Optimization of corrosion properties. Mater Sci-Pol. 2011;29(3):92–104. https://doi.org/10.2478/s13536-011-0025-5 PopoolaPAI PityanaSL FedotovaT PopoolaOM Nd: YAG laser treatment of aluminium –C TiB2 coated: Optimization of corrosion properties Mater Sci-Pol 2011 29 3 92 104 https://doi.org/10.2478/s13536-011-0025-510.2478/s13536-011-0025-5 Search in Google Scholar

Pancikiewicz K, Swierczynska A, Hucko P, Tumidajewicz M. Laser dissimilar welding of AISI and AISI 304 stainless steels. Materials. 2020;13(20): https://doi.org/10.3390/ma13204540 PancikiewiczK SwierczynskaA HuckoP TumidajewiczM Laser dissimilar welding of AISI and AISI 304 stainless steels Materials 2020 13 20 https://doi.org/10.3390/ma1320454010.3390/ma13204540760194633066116 Search in Google Scholar

Landowski M, Swierczynska A, Rogalski G, Fydrych D. Autogenous fiber laser welding of 316L austenitic and 2304 lean duplex stainless steels. Materials. 2020;13(13): https://doi.org/10.3390/ma13132930 LandowskiM SwierczynskaA RogalskiG FydrychD Autogenous fiber laser welding of 316L austenitic and 2304 lean duplex stainless steels Materials 2020 13 13 https://doi.org/10.3390/ma1313293010.3390/ma13132930737237532629895 Search in Google Scholar

Miao YG, Han DF, Yao JZ, Li F. Microstructure and interface characteristics of laser penetration brazed magnesium alloy and steel. Sci Technol Welding Joining. 2010;15(2):97–103. https://doi.org/10.1179/136217109x12518083193676 MiaoYG HanDF YaoJZ LiF Microstructure and interface characteristics of laser penetration brazed magnesium alloy and steel Sci Technol Welding Joining 2010 15 2 97 103 https://doi.org/10.1179/136217109x1251808319367610.1179/136217109X12518083193676 Search in Google Scholar

Li L, Tan C, Chen Y, Guo W, Hu X. Influence of Zn coating on interfacial reactions and mechanical properties during laser welding-brazing of Mg to steel. Metall Mater Trans A Phys Metall Mater Sci. 2012;43A(12):4740–54. https://doi.org/10.1007/s11661-012-1266-6 LiL TanC ChenY GuoW HuX Influence of Zn coating on interfacial reactions and mechanical properties during laser welding-brazing of Mg to steel Metall Mater Trans A Phys Metall Mater Sci. 2012 43A 12 4740 54 https://doi.org/10.1007/s11661-012-1266-610.1007/s11661-012-1266-6 Search in Google Scholar

Song G, Li T, Zhang Z, Liu L. Investigation of unequal thickness Mg/steel butt-welded plate by hybrid laser-tungsten inert gas welding with a Ni interlayer. J Manuf Process., 2017;30:299–302. https://doi.org/10.1016/j.jmapro.2017.09.019 SongG LiT ZhangZ LiuL Investigation of unequal thickness Mg/steel butt-welded plate by hybrid laser-tungsten inert gas welding with a Ni interlayer J Manuf Process. 2017 30 299 302 https://doi.org/10.1016/j.jmapro.2017.09.01910.1016/j.jmapro.2017.09.019 Search in Google Scholar

Liu L, Qi X. Strengthening effect of nickel and copper interlayers on hybrid laser-TIG welded joints between magnesium alloy and mild steel. Mater Des. 2010;31(8):3960–63. https://doi.org/10.1016/j.matdes.2010.03.039 LiuL QiX Strengthening effect of nickel and copper interlayers on hybrid laser-TIG welded joints between magnesium alloy and mild steel Mater Des 2010 31 8 3960 63 https://doi.org/10.1016/j.matdes.2010.03.03910.1016/j.matdes.2010.03.039 Search in Google Scholar

Liu L, Qi X, Wu Z. Microstructural characteristics of lap joint between magnesium alloy and mild steel with and without the addition of Sn element. Mater Lett. 2010;64(1):89–92. https://doi.org/10.1016/j.matlet.2009.10.023 LiuL QiX WuZ Microstructural characteristics of lap joint between magnesium alloy and mild steel with and without the addition of Sn element Mater Lett 2010 64 1 89 92 https://doi.org/10.1016/j.matlet.2009.10.02310.1016/j.matlet.2009.10.023 Search in Google Scholar

Song G, Wang H-Y, Li T-T, Liu L-M. Joining mechanism of Mg alloy/steel butt joints with Cu-Zn interlayer by hybrid laser-TIG welding source. J Iron Steel Res Int. 2018;25(2):221–7. https://doi.org/10.1007/s42243-018-0024-4 SongG WangH-Y LiT-T LiuL-M Joining mechanism of Mg alloy/steel butt joints with Cu-Zn interlayer by hybrid laser-TIG welding source J Iron Steel Res Int 2018 25 2 221 7 https://doi.org/10.1007/s42243-018-0024-410.1007/s42243-018-0024-4 Search in Google Scholar

Dasgupta AK, Mazumder J. Laser welding of zinc coated steel: an alternative to resistance spot welding. Sci Technol Welding Joining. 2008;13(3):289–93. https://doi.org/10.1179/174329308x277511 DasguptaAK MazumderJ Laser welding of zinc coated steel: an alternative to resistance spot welding Sci Technol Welding Joining 2008 13 3 289 93 https://doi.org/10.1179/174329308x27751110.1179/174329308X277511 Search in Google Scholar

Tuo Z, Hong Z, Jia LJAL. Laser-arc hybrid welding heat source model for numerical simulation. Appl Laser. 2016. https://doi.org/10.14128/j.cnki.al.20163601.058 TuoZ HongZ JiaLJAL Laser-arc hybrid welding heat source model for numerical simulation Appl Laser 2016 https://doi.org/10.14128/j.cnki.al.20163601.058 Search in Google Scholar

Shirai T, Sugar J, Musgrove A, Wiese WL. Spectral data for highly ionized atoms: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Kr, and Mo. J Phys Chem Ref Data. 2000;3-+. https://doi.org/10.1063/1.556055 ShiraiT SugarJ MusgroveA WieseWL Spectral data for highly ionized atoms: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Kr, and Mo J Phys Chem Ref Data 2000 3-+. https://doi.org/10.1063/1.55605510.1063/1.556055 Search in Google Scholar

Daxin R, Liming LJ. Analysis of the adhesive layer of laser weld bonding joints in magnesium alloy. J Mech Eng. 2009;45(8):266–72. https://doi.org/10.3901/JME.2009.08.266 DaxinR LimingLJ Analysis of the adhesive layer of laser weld bonding joints in magnesium alloy J Mech Eng 2009 45 8 266 72 https://doi.org/10.3901/JME.2009.08.26610.3901/JME.2009.08.266 Search in Google Scholar

Vidal CR, Cooper J, Smith EW. Unified theory calculations of stark broadened hydrogen lines including lower state interactions. J Quant Spectrosc Radiat Transfer. 1971;11(3):263–81. https://doi.org/10.1016/0022-4073(71)90013-6 VidalCR CooperJ SmithEW Unified theory calculations of stark broadened hydrogen lines including lower state interactions J Quant Spectrosc Radiat Transfer 1971 11 3 263 81 https://doi.org/10.1016/0022-4073(71)90013-610.1016/0022-4073(71)90013-6 Search in Google Scholar

Ruifeng N, Binghua L, Yani W, Xingfei YJ. Evaporation loss of Mg element in pulsed laser welding of 5A05 aluminum alloy and distribution of micro-hardness of welding joint. Trans China Welding Inst. 2010;15(5):483–94. https://doi.org/10.1006/jaer.1997.0243 RuifengN BinghuaL YaniW XingfeiYJ Evaporation loss of Mg element in pulsed laser welding of 5A05 aluminum alloy and distribution of micro-hardness of welding joint Trans China Welding Inst 2010 15 5 483 94 https://doi.org/10.1006/jaer.1997.024310.1006/jaer.1997.0243 Search in Google Scholar

Xu JF, Wei BB. Liquid phase flow and microstructure formation during rapid solidification. Acta Phys Sin. 2004;53(6):1909–15. XuJF WeiBB Liquid phase flow and microstructure formation during rapid solidification Acta Phys Sin 2004 53 6 1909 15 10.7498/aps.53.1909 Search in Google Scholar

Elsukov EP, Povstugar IV, Ul’yanov AL. Deformation-induced dissolution of the intermetallic compound FeSn in nanocrystalline α-Fe. Phys Met Metall. 2009;107(1):80–9. https://doi.org/10.1134/S0031918x09010116 ElsukovEP PovstugarIV Ul’yanovAL Deformation-induced dissolution of the intermetallic compound FeSn in nanocrystalline α-Fe Phys Met Metall 2009 107 1 80 9 https://doi.org/10.1134/S0031918x0901011610.1134/S0031918X09010116 Search in Google Scholar

Shuai S, Guo E, Phillion AB, Callaghan MD, Jing T, Lee PD. Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of Mg Sn alloys. Acta Mater. 2016;118:260–9. https://doi.org/10.1016/j.actamat.2016.07.047 ShuaiS GuoE PhillionAB CallaghanMD JingT LeePD Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of Mg Sn alloys Acta Mater 2016 118 260 9 https://doi.org/10.1016/j.actamat.2016.07.04710.1016/j.actamat.2016.07.047 Search in Google Scholar

Zhou DW, Li T, Xu SH, Liu JS. Numerical and experimental investigations in laser welding for steel and magnesium alloy. Lasers Manuf Mater Process. 2018;5(3):1–15. ZhouDW LiT XuSH LiuJS Numerical and experimental investigations in laser welding for steel and magnesium alloy Lasers Manuf Mater Process 2018 5 3 1 15 10.1007/s40516-018-0063-5 Search in Google Scholar

eISSN:
2083-134X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, andere, Nanomaterialien, Funktionelle und Intelligente Materialien, Charakterisierung und Eigenschaften von Materialien