Leading researcher, Professor, D.Sc., Department of Theoretical Principles of Mechanical Desrtructions, Karpenko Phisico-Mechanical Institute of NASUkraine
Math of Irst category, M.Sc., Department of Physico-Mechanical Fields:Pidstryhach, Institute of Applied Problems of Mechanics and Mathematics of NASUkraine
Марчук Г.И. (1989). Методы вычислительной математики. Москва: “Наука”, 608c.Search in Google Scholar
Ши Д. (1988). Численные методы в задачах теплообмена. Москва: “Мир”, 544c.Search in Google Scholar
Howes A.H., Whitaker S. (1980) The spatial averaging theorem revisited. Chemical Engineering Science, 23(12), 1613-1623. DOI: 10.1016/0009-2509(85)80078-6.Search in Google Scholar
Lindell I.V. (1995). Methods for Electromagnetic Field Analysis.Piscataway,NJ: IEEE Press, 320p.Search in Google Scholar
Desai R.A., Lowery A.J., Christopouls C., Naylor C.P., Blanshard J.M.V., Gregson K. (1992) Computer modelling of microwave cooking using the transmission-line model. IEEE Proc. A, 139, 30-38. DOI: 10.1049/ip-a-3.1992.0005.Search in Google Scholar
Dibben D.C., Metaxas A.C. (1994) Finite element time domain analisys of multimode applicators using edge elements. J. Microwave Power Electomagnetic Energy, 29, 242-251. DOI: 10.1080/08327823.1994.11688252.Search in Google Scholar
Iskander M. (1993) Modeling the microwave process - challenges and new directions. Ceramic Trans., 36,167-199.Search in Google Scholar
Jia X., Jolly P. (1992) Simulation of microwave field and power distribution in a cavity by a three-dimensional finite element method. J. Microwave Power Electomagnetic Energy, 27, 11-22. DOI:10.1080/08327823.1992.11688166.Search in Google Scholar
Lorenson C. (1990) The why’s and how’s of mathematical modelling of microwave heating. Microwave World, 11(1), 14-22.DOI: doi: 10.20944/preprints202505.0265.v1.Search in Google Scholar
Lorenson C., Gallerneault C. (1991) Numerical method for the modelling of microwave fields. Ceramic Trans., 21, 193-200.Search in Google Scholar
Davis J. (1993) Finite element analysis of waveguides and cavities – a review. IEEE Trans. Magnetics., 29, 1578-1583. DOI: 10.1109/20.250706.Search in Google Scholar
Chen D.S., Sing R.K., Haghighi K., Nelson P. (1993) Finite element analysis of temperature distribution in microwave cylindrical potato tissues. J. Food Engineering., 18, 351-368. DOI: 10.1016/0260-8774(93)90052-L.Search in Google Scholar
Lin Y.E., Anantheswaran R.C., Puri V.M. (1995) Finite elment analysis of microwave heating of solid foods. J. Food Engineering, 25, .85-112. DOI: 10.1016/0260-8774(94)00008-W.Search in Google Scholar
Jansen W., Wekken B. (1991) Modeling of dielectrically assisted drying. J. Microwave Power Electromagnetic Energy, 26(4), 227-236. DOI: 10.1080/08327823.1991.11688161.Search in Google Scholar
Thomas H.R., King S.D. (1992) Couplet heat and mass transfer in unsaturated soil. A potentially –based solution. Int. J. Numerical Analytical Methods Geomechanics., 16, 757-773. DOI: 10.1002/nag.1610161005.Search in Google Scholar
Ozilgen M., Heil J.R. (1994) Mathematical modeling of transient heat and mass transport in a backing biscuit. J. Food Proc. Pres., (18), 133-148. DOI: 10.1111/j.1745-4549.1994.tb00248.x.Search in Google Scholar
Wang N., Brennan J.G. (1995) A mathematical model of simultaneous heat and moisture transfer during drying of potato. J. Food Engineering, 24, .47-60. DOI: 10.1016/0260-8774(94)P1607-Y.Search in Google Scholar
Chen P., Pei D.C.T. (1989) A mathematical model for drying processes. Int. J. Heat and Mass Transfer, 32(2), 297-310. DOI: 10.1016/0017-9310(89)90177-4.Search in Google Scholar
King C.J. (1971) Freeze drying of foods. Butterworth, London: CRC Press,86p.Search in Google Scholar
Chen P., Pei D.C.T. (1989) A mathematical model for drying processes. Int. J. Heat and Mass Transfer, 32(2), 297-310. DOI: 10.1016/0017-9310(89)90177-4.Search in Google Scholar
Berger D., Pei D.C.T. (1973) Drying of hygroscopic capillary porous solids – a theoretical approach. Int. J. Heat and Mass Transfer, 16, 293-302. DOI: 10.1016/0017-9310(73)90058-6.Search in Google Scholar
Jansen W., Wekken B. (1991) Modelling of dielectric assisted drying. J. Microwave Power Electromagnetic Energy, 26, 227-236. DOI: 10.1080/08327823.1991.11688161.Search in Google Scholar
Lal R., Shukla M.K. (2004) Principles of soil physics. Basel, NY: MarcelDekker Inc., 717p.Search in Google Scholar
Philip J.R., Vries D.A. (1957) Moisture movement in porous materials under temperature gradients. Thans. Am. Geophys. Union, 38, 222-232. DOI: 10.1029/TR038i002p00222.Search in Google Scholar
Raudkivi A.J., Nguyen Van U. (1976) Soil moisture movement by temperature gradient. J. Geotechnical Engineering Division, 102, .1225-1244. DOI: 1 0.1061/AJGEB6.0000353.Search in Google Scholar
Majorata C.E., Gawin G., Pesavento F., Schrefler В.А. (2002) The sixth international conference on computational structures technology /The third international conference on engineering computational technology/, 4-6 September 2020, Civil-Comp Press and imprint of Civil-Comp Ltd.: Stirling, Scotlant. – Czech Republic, Prague., 30p.Search in Google Scholar
Lepers B., Putranto A., Umminger M., Link G., Jelonnek J. (2014) A drying and thermoelastic model for fast microwave heating of concrete. Frontiers in Heat and Mass Transfer (FHMT), 5(13), 1-11. DOI:10.5098/hmt.5.13.Search in Google Scholar
Ong K.C.G, Akbarnezhad A. (2006) Thermal stresses in the microwave heating of concrete /Proceedings of the 31st Conference on our world in concrete & structures/, 16-17 August 2006,Thailand, Singapore, 15p.Search in Google Scholar
Like Q., Young L., Jun D., Pengfei T. (2016) Thermal stress distribution and evolution of concrete particles under microwave irradiation. Journal of Engineering Sciences and Technology Review, 9(3), 148-154. DOI: 10.25103/jestr.093.23.Search in Google Scholar