Uneingeschränkter Zugang

The Use of Recurrent Neural Networks (S-RNN, LSTM, GRU) For Flood Forecasting Based on Data Extracted from Classical Hydraulic Modeling

  
13. Dez. 2024

Zitieren
COVER HERUNTERLADEN

Peleg, N. et al., 2022. Mapping storm spatial profiles for flood impact assessments. Advances in Water Resources, 166(104258). Search in Google Scholar

Chen, T.-H. K., Kincey, M. E., Rosser, N. J. & Seto, K. C., 2024. Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30 year analysis of the Himalaya. Science of The Total Environment, 922(171161). Search in Google Scholar

Tominaga, M., 1998. Case Study of the Social Impact of Flood. IFAC Proceedings Volumes, 31(Issue 28), pp. 69-74. Search in Google Scholar

Guo, K., Guan, M. & Yan, H., 2023. Utilizing social media data to evaluate urban flood impact in data scarce cities. International Journal of Disaster Risk Reduction, 93(103780). Search in Google Scholar

Kourtit, K., Nijkamp, P. & Banica, A., 2023. An analysis of natural disasters’ effects – A global commparative study of 'Belssing in Disguise'. Socio-Economic Planning Sciences, 88(101599). Search in Google Scholar

Tabari, H., 2021. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. Journal of Hydrology, 593(125932). Search in Google Scholar

Park, K. & Lee, E. H., 2024. Urban flood vulnerability analysis and prediction based on the land use using Deep Neural Network. International Journal of Disaster Risk Reduction, 101(104231). Search in Google Scholar

Fischer, S. & Schumann, A. H., 2024. Temporal changes in the frequency of flood types and their impact on flood statistics. Journal of Hydrology X, 22(100171). Search in Google Scholar

Kannapiran, U. M. & Bhaskar, A. S., 2024. “Flood inundation mapping of upstream region in the Adyar River basin: Integrating hydrologic engineering centre's river analysis system (HEC-RAS) approach with groundwater considerations”. Groundwater for Sustainable Development, 24(101085). Search in Google Scholar

Panda, R. K., Pramanik, N. & Bala, B., 2010. Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model. Computers & Geosciences, 36(Issue 6), pp. 735-745. Search in Google Scholar

Banks, J. C., Camp, J. V. & Abkowitz, M. D., 2013. Adaptation planning for floods: a review of available tools. Natural Hazards, Volume 70, pp. 1327-1337. Search in Google Scholar

Alén, G. G., Montalvo, C., Cea, L. & Puertas, J., 2024. Iber-PEST: Automatic calibration in fully distributed hydrological models based on the 2D shallow water equations. Environmental Modelling & Software, 177(106047). Search in Google Scholar

Hoven, K. v. d., Kroeze, C. & Loon-Steensma, J. M. v., 2022. Characteristics of realigned dikes in coastal Europe: Overview and opportunities for nature-based flood protection. Ocean & Coastal Management, 222(106116). Search in Google Scholar

Fenton, J. D., 2024. Convolution, deconvolution, the unit hydrograph and flood routing. Journal of Hydrology, 634(131034). Search in Google Scholar

Apicella, A., Donnarumma, F., Isgrò, F. & Prevete, R., 2021. A survey on modern trainable activation functions. Neural Networksv, Volume 138, pp. 14-32. Search in Google Scholar

Akdemir, E. & Barışçı, N., 2024. A review on deep learning applications with semantics. Expert Systems with Applications, 251(124029). Search in Google Scholar

Nourani, V., Baghanam, A. H., Adamowski, J. & Kisi, O., 2014. Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review. Journal of Hydrology, Volume 514, pp. 358-377. Search in Google Scholar

Ajorloo, S. et al., 2024. A systematic review of machine learning methods in software testing. Applied Soft Computing, Issue 111805. Search in Google Scholar

Bahrami, S. et al., 2024. Application of artificial neural network to multiphase flow metering: A review. Flow Measurement and Instrumentation, 97(102601). Search in Google Scholar

Camero, A., Toutouh, J. & Alba, E., 2020. Random error sampling-based recurrent neural network architecture optimization. Engineering Applications of Artificial Intelligence, 96(103946). Search in Google Scholar

Quiroga, V. M., Kure, S., Udo, K. & Mano, A., 2016. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Aplication of the new HEC-Ras version 5. Ribagua - Revista Iberoamericana del Agua, Volume 3(1), pp. 25-33. Search in Google Scholar

Golshanrad, P. & Faghih, F., 2024. DeepCover: Advancing RNN test coverage and online error prediction using state machine extraction. Systems and Software, 211(112024). Search in Google Scholar

Gholami, H. et al., 2023. Interpretability of simple RNN and GRU deep learning models used to map land susceptibility to gully erosion. Science of The Total Environment, 904(166960). Search in Google Scholar

Lindemann, B. et al., 2021. A survey on long short-term memory networks for time series prediction. 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 20, Volume 99, pp. 650-655. Search in Google Scholar

Cho, K. et al., 2014. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. Doha, Qatar, Association for Computational Linguistics, pp. 1724-1734. Search in Google Scholar

Parisi, L., Ma, R., RaviChandran, N. & Lanzillotta, M., 2021. hyper-sinh: An accurate and reliable function from shallow to deep learning in TensorFlow and Keras. Machine Learning with Applications, 6(100112). Search in Google Scholar

Setiyono, T. et al., 2024. Application of TensorFlow model for identification of herbaceous mimosa (Mimosa strigillosa) from digital images. Smart Agricultural Technology, Volume 7(100400). Search in Google Scholar

Haghighat, E. & Juanes, R., 2021. SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Computer Methods in Applied Mechanics and Engineering, Volume 373(113552). Search in Google Scholar

Elsner, J., 2023. Taming the Panda with Python: A powerful duo for seamless robotics programming and integration. SoftwareX, Volume 24(101532). Search in Google Scholar

Abert, C. et al., 2015. A full-fledged micromagnetic code in fewer than 70 lines of NumPy. Journal of Magnetism and Magnetic Materials, Volume Volume 387, pp. 13-18. Search in Google Scholar

[31] ANAR & INHGA, 2023. PLANUL DE MANAGEMENT AL RISCULUI LA INUNDAȚII A.B.A. ARGEȘ – VEDEA CICLUL II DE IMPLEMENTARE A DIRECTIVEI INUNDAȚII 2007/60/CE, București: s.n. Search in Google Scholar

Kraus, K. & Pfeifer, N., 2001. Advanced DTM Generation from lidar data. International Archives of Photogrammetry and Remote Sensing, Volume XXXIV-3/W4, pp. 22-24. Search in Google Scholar

HARUN, M. & RASHID, U., 1990. Estimation of Manning's Roughness Coefficient for Basin and Border Irrigation. Agricultural Water Management, Volume 18, pp. 29-33. Search in Google Scholar

Azmon, B., 1992. Manning coefficient of roughness - a case study along Soreq stream, 1971-1981. Journal of Hydrology, Volume 132, pp. 361-377. Search in Google Scholar

BAO, H.-j. & ZHAO, L.-n., 2011. Hydraulic model with roughness coefficient updating method based on Kalman filter for channel flood forecast. Water Science and Engineering, Volume 4, pp. 13-23. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, Technik, andere