Uneingeschränkter Zugang

Effect of Torso Non-Homogeneities in the quasi-static inverse problems arising in electrocardiology


Zitieren

[1] B.E. Ainseba, M. Bendahmane and A. Lopez. Analysis of an inverse problem for the bidomain model of cardiac tissue. Preprint.Search in Google Scholar

[2] M. Bendahmane, R. Bürger and R. Ruiz. A finite volume scheme for cardiac propagation in media with isotropic conductivities. Mathematics and Computers in Simulation, (80):1821-1840, 2010.10.1016/j.matcom.2009.12.010Search in Google Scholar

[3] M. Bendahmane, R. Bürger and R. Ruiz. A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Num. Met. for Part. Diff. Eq., 26, 1377-1404, 2010.10.1002/num.20495Search in Google Scholar

[4] M. Bendahmane and K.H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bido-main model of cardiac tissue, Netw. Heterog. Media 1 (2006) 185–218.10.3934/nhm.2006.1.185Search in Google Scholar

[5] M. Bendahmane and K.H. Karlsen. Finite volume methods for degenerate reaction-diffusion systems modeling the Cardiac electric field. Applied Numerical Mathematics, (59)9, 2266-2284, 2009.10.1016/j.apnum.2008.12.016Search in Google Scholar

[6] P.G. Ciarlet. The finite element method for elliptic problems. North-Holland Publishing Co, Amsterdam, 1978 Studies in Mathematics and its Applications, Vol 4.Search in Google Scholar

[7] P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang, L.F. Pavarino, Adaptivity in space and time for reaction–diffusion systems in electro-cardiology, SIAM J. Sci. Comput. 28 (2006) 942–962.10.1137/050634785Search in Google Scholar

[8] P. Colli Franzone, L.F. Pavarino, A parallel solver for reaction-diffusion systems in computational electro-cardiology, Math. Models Meth. Appl. Sci. 14 (2004) 883–911.10.1142/S0218202504003489Search in Google Scholar

[9] P. Colli Franzone, L.F. Pavarino, B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models, Math. Biosci., 197 (2005), 35–66.10.1016/j.mbs.2005.04.003Search in Google Scholar

[10] P. Colli Franzone, G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro-and macroscopic level, in: A. Lorenzi, B. Ruf (Eds.), Evolution equations, semigroups and functional analysis, Birkh¨auser, Basel, 2002, pp. 49–78.10.1007/978-3-0348-8221-7_4Search in Google Scholar

[11] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952) 500–544.10.1113/jphysiol.1952.sp004764Search in Google Scholar

[12] C.R. Johnson, R.S. MacLeod and P.R. Ershler. A computer model for the study of electrical current flow in the human thorax. Computers in Biology and Medicine, 1992;22:305323.10.1016/0010-4825(92)90020-NSearch in Google Scholar

[13] C.R. Johnson, R.S. MacLeod and M.A. Matheson. Computer simulations reveal complexity of electrical activity in the human thorax. Comp. in Physics, 1992;6:230237.10.1063/1.4823071Search in Google Scholar

[14] O. A. Ladyzhenskaya and N. N. Ural’tseva. Linear and quasilinear elliptic equations. Academic Press, New York, 1968.Search in Google Scholar

[15] J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969.Search in Google Scholar

[16] J.-L Lions. Contrôlabilité Exacte, Perturbation et Stabilisation de Systèmes Distribués. Masson, 1986.Search in Google Scholar

[17] C.E. Miller and C.S. Henriquez. Finite element analysis of bioelectric phenomena. Crit. Rev. in Biomed. Eng., 1990;18:181205.Search in Google Scholar

[18] J. Nenonen, H.M. Rajala and T. Katilia. Biomagnetic Localization and 3D Modelling. Helsinki University of Technology, Espoo, Finland, 1992, Report TKK-F-A689.Search in Google Scholar

[19] D. Noble, A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials, J. Physiol. 160 (1962) 317–352.10.1113/jphysiol.1962.sp006849135953514480151Search in Google Scholar

[20] A. van Oosterom and T. Oostendorp, ECGSIM; an interactive tool for studying the genesis of QRST waveforms. Heart 90 (2004), 165–168.10.1136/hrt.2003.014662Search in Google Scholar

[21] A. van Oosterom, Interactive simulation of the QRS wave forms. In: Images of the Twenty-first Century. Proc. of the Annual Internat. Conf. of the IEEE Eng. in Med. and Biol. Soc. edt: Y. Kim, F.A. Spelman IEEE Publishing Services, New York, 1989, 183-184.Search in Google Scholar

[22] R. Plonsey, Bioelectric Phenomena, McGraw-Hill, New York, 1969.Search in Google Scholar

[23] A. N. Tikhonov. Regularization of incorrectly posed problems. Soviet Math. Dokl., 4:16241627, 1963.Search in Google Scholar

eISSN:
2351-8227
Sprache:
Englisch