1. bookVolumen 53 (2022): Heft 1 (January 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-8526
Erstveröffentlichung
05 Feb 2007
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Mesoarchean melt and fluid inclusions in garnet from the Kangerlussuaq basement, Southeast Greenland

Online veröffentlicht: 14 Feb 2022
Volumen & Heft: Volumen 53 (2022) - Heft 1 (January 2022)
Seitenbereich: 1 - 9
Eingereicht: 18 Nov 2021
Akzeptiert: 12 Jan 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-8526
Erstveröffentlichung
05 Feb 2007
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

The present work reports the first anatectic melt inclusions found so far in the Mesoarchean basement in East Greenland. Using optical microscope observations and MicroRaman spectroscopy, we show that garnets in metasedimentary migmatite contain primary polycrystalline aggregates which can be confidently interpreted as former droplets of anatectic melt, i.e. nanogranitoids. In some cases, they coexist with coeval fluid inclusions under conditions of primary fluid-melt immiscibility. The re-evaluation of the metamorphic pressure and temperature conditions with up-to-date phase equilibria modelling, combined with the identification of nanogranitoids and fluid inclusions, suggests metamorphic peak equilibration and partial melting in presence of a COH-fluid at T ~1000°C and P > 7 kbar. To date, this is the oldest verified occurrence of nanogranitoids and fluid-melt immiscibility during garnet growth in a partially molten environment.

Bartoli, O., Acosta-Vigil, A., Ferrero, S., & Cesare, B. (2016). Granitoid magmas preserved as melt inclusions in high-grade metamorphic rock. American Mineralogist, 101(7), 1543-1559. https://doi.org/10.2138/am-2016-5541CCBYNCND10.2138/am-2016-5541CCBYNCND Search in Google Scholar

Bufe, N. A., Holness, M. B., & Humphreys, M. C. (2014). Contact metamorphism of Precambrian gneiss by the Skaergaard Intrusion. Journal of Petrology, 55(8), 1595-1617. https://doi.org/10.1093/petrology/egu03510.1093/petrology/egu035 Search in Google Scholar

Carvalho, B. B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., ... & Poli, S. (2019). Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy). Journal of Metamorphic Geology, 37(7), 951-975. https://doi.org/10.1111/jmg.1246310.1111/jmg.12463 Search in Google Scholar

Carvalho, B. B., Bartoli, O., Cesare, B., Tacchetto, T., Gianola, O., Ferri, F., ... & Szabó, C. (2020). Primary CO2-bearing fluid inclusions in granulitic garnet usually do not survive. Earth and Planetary Science Letters, 536, 116170. https://doi.org/10.1016/j.epsl.2020.11617010.1016/j.epsl.2020.116170 Search in Google Scholar

Cesare, B., Acosta-Vigil, A., Bartoli, O., & Ferrero, S. (2015). What can we learn from melt inclusions in migmatites and granulites?. Lithos, 239, 186-216. https://doi.org/10.1016/j.lithos.2015.09.02810.1016/j.lithos.2015.09.028 Search in Google Scholar

Cesare, B., Maineri, C., Toaldo, A. B., Pedron, D., & Vigil, A. A. (2007). Immiscibility between carbonic fluids and granitic melts during crustal anatexis: A fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain. Chemical Geology, 237, 433–449. https://doi.org/10.1016/j.chemgeo.2006.07.01310.1016/j.chemgeo.2006.07.013 Search in Google Scholar

Connolly, J. A. D. (2009). The geodynamic equation of state: what and how. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009GC00254010.1029/2009GC002540 Search in Google Scholar

Dhuime, B., Hawkesworth, C. J., Delavault, H., & Cawood, P. A. (2018). Rates of generation and destruction of the continental crust: implications for continental growth. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132), 20170403. https://doi.org/10.1098/rsta.2017.040310.1098/rsta.2017.0403618955730275156 Search in Google Scholar

Ferrero, S., Ague, J. J., O’Brien, P. J., Wunder, B., Remusat, L., Ziemann, M. A., & Axler, J. (2021a). High-pressure, halogen-bearing melt preserved in ultrahigh-temperature felsic granulites of the Central Maine Terrane, Connecticut (USA). American Mineralogist, 106(8), 1225-1236. https://doi.org/10.2138/am-2021-769010.2138/am-2021-7690 Search in Google Scholar

Ferrero, S., Braga, R., Berkesi, M., Cesare, B., & Laridhi Ouazaa, N. (2014). Production of metaluminous melt during fluid-present anatexis: an example from the Maghrebian basement, La Galite Archipelago, central Mediterranean. Journal of Metamorphic Geology, 32(2), 209-225. https://doi.org/10.1111/jmg.1206810.1111/jmg.12068 Search in Google Scholar

Ferrero, S., Wannhoff, I., Laurent, O., Yakymchuk, C., Darling, R., Wunder, B., ... & O’Brien, P. J. (2021b). Embryos of TTGs in Gore Mountain garnet megacrysts from water-fluxed melting of the lower crust. Earth and Planetary Science Letters, 569, 117058. https://doi.org/10.1016/j.epsl.2021.11705810.1016/j.epsl.2021.117058 Search in Google Scholar

Ferrero, S., Wunder, B., Ziemann, M. A., Wälle, M., & O’Brien, P. J. (2016). Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust. Earth and Planetary Science Letters, 454, 121-131. https://doi.org/10.1016/j.epsl.2016.08.04310.1016/j.epsl.2016.08.043 Search in Google Scholar

Fuhrman, M. L., & Lindsley, D. H. (1988). Ternary-feldspar modeling and thermometry. American Mineralogist, 73(3-4), 201-215. Search in Google Scholar

Gianola, O., Bartoli, O., Ferri, F., Galli, A., Ferrero, S., Capizzi, L. S., ... & Cesare, B. (2021). Anatectic melt inclusions in ultra high temperature granulites. Journal of Metamorphic Geology, 39(3), 321-342. https://doi.org/10.1111/jmg.1256710.1111/jmg.12567 Search in Google Scholar

Holland, T. J. B., & Powell, R. T. J. B. (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of metamorphic Geology, 16(3), 309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x10.1111/j.1525-1314.1998.00140.x Search in Google Scholar

Holwell, D. A., Jenkin, G. R. T., Butterworth, K. G., Abraham-James, T., & Boyce, A. J. (2013). Orogenic gold mineralisation hosted by Archaean basement rocks at Sortekap, Kangerlussuaq area, East Greenland. Mineralium Deposita, 48(4), 453-466. https://doi.org/10.1007/s00126-012-0434-310.1007/s00126-012-0434-3 Search in Google Scholar

Kays, M. A., Goles, G. G., & Grover, T. W. (1989). Precambrian sequence bordering the Skaergaard Intrusion. Journal of Petrology, 30(2), 321-361. https://doi.org/10.1093/petrology/30.2.32110.1093/petrology/30.2.321 Search in Google Scholar

Kirkland, C. L., Yakymchuk, C., Hollis, J., Heide-Jørgensen, H., & Danišík, M. (2018). Mesoarchean exhumation of the Akia terrane and a common Neoarchean tectono-thermal history for West Greenland. Precambrian Research, 314, 129-144.10.1016/j.precamres.2018.06.004 Search in Google Scholar

Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68(1-2), 277-279. Search in Google Scholar

Leeman, W. P., Dasch, E. J., & Kays, M. A. (1976). 207Pb/206Pb whole-rock age of gneisses from the Kangerdlugssuaq area, eastern Greenland. Nature, 263(5577), 469-471. Search in Google Scholar

Nicoli, G., & Ferrero, S. (2021). Nanorocks, volatiles and plate tectonics. Geoscience Frontiers, 12(5), 101188. https://doi.org/10.1016/j.gsf.2021.10118810.1016/j.gsf.2021.101188 Search in Google Scholar

Nicoli, G., Thomassot, E., Schannor, M., Vezinet, A., & Jovovic, I. (2018). Constraining a Precambrian Wilson Cycle lifespan: an example from the ca. 1.8 Ga Nagssugtoqidian Orogen, Southeastern Greenland. Lithos, 296, 1-16. https://doi.org/10.1016/j.lithos.2017.10.01710.1016/j.lithos.2017.10.017 Search in Google Scholar

Nicoli, G., Moyen, J. F., & Stevens, G. (2016). Diversity of burial rates in convergent settings decreased as Earth aged. Scientific Reports, 6(1), 1-10. doi: 10.1038/srep2635910.1038/srep26359487765627216133 Search in Google Scholar

Palin, R. M., Santosh, M., Cao, W., Li, S. S., Hernández-Uribe, D., & Parsons, A. (2020). Secular change and the onset of plate tectonics on Earth. Earth-Science Reviews, 207, 103172. https://doi.org/10.1016/j.earscirev.2020.10317210.1016/j.earscirev.2020.103172 Search in Google Scholar

Tacchetto, T., Bartoli, O., Cesare, B., Berkesi, M., Aradi, L. E., Dumond, G., & Szabó, C. (2019). Multiphase inclusions in peritectic garnet from granulites of the Athabasca granulite terrane (Canada): Evidence of carbon recycling during Neoarchean crustal melting. Chemical Geology, 508, 197-209. https://doi.org/10.1016/j.precamres.2021.10613910.1016/j.precamres.2021.106139 Search in Google Scholar

Thrane, K. (2021). The oldest part of the Rae craton identified in western Greenland. Precambrian Research, 357, 106139. https://doi.org/10.1016/j.precamres.2021.10613910.1016/j.precamres.2021.106139 Search in Google Scholar

Wager, L. R. (1934). Geological Investigations in East Greenland. (Vol. 105, No. 2-3). CA Reitzels forlag. Search in Google Scholar

Wager, L. R., & Deer, W. A. (1939). Geological investigations in East Greenland, Part IV. Medde lelser om Grønland, 134(5). Search in Google Scholar

White, R. W., Powell, R., & Clarke, G. L. (2002). The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. Journal of metamorphic Geology, 20(1), 41-55. https://doi.org/10.1046/j.0263-4929.2001.00349.x10.1046/j.0263-4929.2001.00349.x Search in Google Scholar

White, R. W., Powell, R. Holland, T. J. B., Johnson, T. E., & Green, E. C. R. (2014). New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3), 261-286. https://doi.org/10.1111/jmg.1207110.1111/jmg.12071 Search in Google Scholar

Yakymchuk, C., Kirkland, C. L., Hollis, J. A., Kendrick, J., Gar-diner, N. J., & Szilas, K. (2020). Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland. Precambrian Research, 339, 105615. https://doi.org/10.1016/j.precamres.2020.10561510.1016/j.precamres.2020.105615 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo