[
Alados, C. L., Pueyo, Y., Barrantes, O., Escós, J., Giner, L., & Robles, A. B. (2004). Variations in landscape patterns and vegetation cover between 1957 and 1994 in a semiarid Mediterranean ecosystem. Landscape Ecology, 19(5), 545–561. https://doi.org/10.1023/B:LAND.0000036149.96664.9a
]Search in Google Scholar
[
Argyriou, A. V., Sarris, A., & Teeuw, R. M. (2016). Using geoinformatics and geomorphometrics to quantify the geodiversity of Crete, Greece. International Journal of Applied Earth Observation and Geoinformation, 51, 47–59. https://doi.org/10.1016/j.jag.2016.04.006
]Search in Google Scholar
[
Bétard, F., & Peulvast, J. P. (2019). Geodiversity Hotspots: Concept, Method and Cartographic Application for Geoconservation Purposes at a Regional Scale. Environmental Management, 63(6), 822–834. https://doi.org/10.1007/s00267-019-01168-5
]Search in Google Scholar
[
Biermanns, P., Schmitz, B., Ustaszewski, K., & Reicherter, K. (2019). Tectonic geomorphology and Quaternary landscape development in the Albania – Montenegro border region: An inventory. Geomorphology, 326, 116–131. https://doi.org/10.1016/j.geomorph.2018.09.014
]Search in Google Scholar
[
Braholli, E., Jashiku, E., & Menkshi, E. (2023). Assessment of the geoheritage of Prespa National Park in Albania for the development of geotourism. ICNSMT 2023 Proceedings Book, 47–56.
]Search in Google Scholar
[
Braholli, E., & Menkshi, E. (2021). Geotourism Potentials of Geosites in Durrës Municipality, Albania. Quaestiones Geographicae, 40(1), 63–73. https://doi.org/10.2478/quageo-2021-0005
]Search in Google Scholar
[
Buchhorn, M., Smets, B., Bertels, L., Roo, B. D., Lesiv, M., Tsendbazar, N.-E., ..., & Tarko, A. (2020). Copernicus Global Land Service: Land Cover 100 m: version 3 Globe 2015–2019: Product User Manual (Dataset v3.0, doc issue 3.3). Zenodo. https://doi.org/10.5281/ZENODO.3938963
]Search in Google Scholar
[
Burger, W., & Burge, M. J. (2008). Digital image processing: An algorithmic introduction using Java. Springer.
]Search in Google Scholar
[
Büttner, G. (2014). CORINE Land Cover and Land Cover Change Products. In I. Manakos & M. Braun (Eds.), Land Use and Land Cover Mapping in Europe (Vol. 18, pp. 55–74). Springer. https://doi.org/10.1007/978-94-007-7969-3_5
]Search in Google Scholar
[
Büttner, G., Kosztra, B., Maucha, G., Pataki, R., Kleeschulte, S., Hazeu, G., ..., & Littkopf, A. (2021). Copernicus Land Monitoring Service-CORINE Land Cover. User Manual. Copernicus Publications.
]Search in Google Scholar
[
Cantón, Y., Del Barrio, G., Solé-Benet, A., & Lázaro, R. (2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. CATENA, 55(3), 341–365. https://doi.org/10.1016/S0341-8162(03)00108-5
]Search in Google Scholar
[
Carrión-Mero, P., Dueńas-Tovar, J., Jaya-Montalvo, M., Berrezueta, E., & Jiménez-Orellana, N. (2022). Geodiversity assessment to regional scale: Ecuador as a case study. Environmental Science & Policy, 136, 167–186. https://doi.org/10.1016/j.envsci.2022.06.009
]Search in Google Scholar
[
Chrobak, A., Novotný, J., & Struś, P. (2021). Geodiversity Assessment as a First Step in Designating Areas of Geotourism Potential. Case Study: Western Carpathians. Frontiers in Earth Science, 9, 752669. https://doi.org/10.3389/feart.2021.752669
]Search in Google Scholar
[
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., ..., & Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v2.1.4. Geoscientific Model Development, 8(7), 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015
]Search in Google Scholar
[
Crisp, J. R., Ellison, J. C., & Fischer, A. (2021). Current trends and future directions in quantitative geodiversity assessment. Progress in Physical Geography: Earth and Environment, 45(4), 514–540. https://doi.org/10.1177/0309133320967219
]Search in Google Scholar
[
Daniel, W. W. (1990). Applied nonparametric statistics (2nd ed.). Duxbury.
]Search in Google Scholar
[
Datta, K. (2022). Does geodiversity correlate with land use/land cover diversity? A case study of Birbhum district, West Bengal, India. Proceedings of the Geologists’ Association, 133(6), 589–602. https://doi.org/10.1016/j.pgeola.2022.07.004
]Search in Google Scholar
[
Debinski, D. M., & Holt, R. D. (2000). A Survey and Overview of Habitat Fragmentation Experiments. Conservation Biology, 14(2), 342–355. https://doi.org/10.1046/j.1523-1739.2000.98081.x
]Search in Google Scholar
[
Dilek, Y., Shallo, M., & Furnes, H. (2005). Rift-Drift, Seafloor Spreading, and Subduction Tectonics of Albanian Ophiolites. International Geology Review, 47(2), 147–176. https://doi.org/10.2747/0020-6814.47.2.147
]Search in Google Scholar
[
Dollma, M. (2019). Geotourism potential of Thethi National Park (Albania). International Journal of Geoheritage and Parks, 7(2), 85–90. https://doi.org/10.1016/j.ijgeop.2019.05.002
]Search in Google Scholar
[
Dos Santos, D. S., Mansur, K. L., De Arruda Jr, E. R., Dantas, M. E., & Shinzato, E. (2019). Geodiversity Mapping and Relationship with Vegetation: A Regional-Scale Application in SE Brazil. Geoheritage, 11(2), 399–415. https://doi.org/10.1007/s12371-018-0295-y
]Search in Google Scholar
[
Dyczek, P., Shpuza, S., & Zych, I. (Eds.) (2020). Scodra: From antiquity to modernity. Vol. 1: A companion to the study of Scodra (First edition). Center for Research on the Antiquity of Southeastern Europe. University of Warsaw.
]Search in Google Scholar
[
EGDI (2024). European Geological Data Infrastructure (EGDI) Mineral Raw Material Database. https://www.europe-geology.eu/
]Search in Google Scholar
[
Elkaichi, A., Errami, E., & Patel, N. (2021). Quantitative assessment of the geodiversity of M’Goun UNESCO Geopark, Central High Atlas (Morocco). Arabian Journal of Geosciences, 14(24), 2829. https://doi.org/10.1007/s12517-021-09235-0
]Search in Google Scholar
[
European Environment Agency (2019). CORINE Land Cover 2018 (raster 100 m), Europe, 6-yearly – Version 2020_20u1, May 2020 [dataset]. https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac
]Search in Google Scholar
[
Florinsky, I. V., & Kuryakova, G. A. (1996). Influence of topography on some vegetation cover properties. CATENA, 27(2), 123–141. https://doi.org/10.1016/0341-8162(96)00005-7
]Search in Google Scholar
[
Forman, R. T. T. (1995). Land mosaics: The ecology of landscapes and regions. Cambridge University Press.
]Search in Google Scholar
[
Gaetani, M., Meço, S., Rettori, R., Henderson, C. M., & Tulone, A. (2015). The Permian and Triassic in the Albanian Alps. Acta Geologica Polonica, 65(3), 271–295. https://doi.org/10.1515/agp-2015-0012
]Search in Google Scholar
[
Gawlick, H.-J., & Schlagintweit, F. (2019). Upper Triassic to Lower Jurassic shallow-water carbonates north of Lake Shkodra (NW Albania, Albanian Alps Zone): Part of the Adriatic Carbonate Platform basement. Acta Palaeontologica Romaniae, 15(1), 3–12. https://doi.org/10.35463/j.apr.2019.01.01
]Search in Google Scholar
[
Gjoni, A., Kucaj, E., Cela, G., Bardhi, A., & Osmani, M. (2023). Impacts of climate change in the meteorological conditions during the period 2022 in Albania. E3S Web of Conferences, 436, 02008.
]Search in Google Scholar
[
Gray, M. (2018). Geodiversity. In Geoheritage (pp. 13–25). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00001-0
]Search in Google Scholar
[
Gupta, S. K., & Pandey, A. C. (2020). Change detection of landscape connectivity arisen by forest transformation in Hazaribagh wildlife sanctuary, Jharkhand (India). Spatial Information Research, 28(4), 391–404. https://doi.org/10.1007/s41324-019-00301-0
]Search in Google Scholar
[
Herold, M., Scepan, J., & Clarke, K. C. (2002). The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses. Environment and Planning A: Economy and Space, 34(8), 1443–1458. https://doi.org/10.1068/a3496
]Search in Google Scholar
[
Hjort, J., Heikkinen, R. K., & Luoto, M. (2012). Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodiversity and Conservation, 21(13), 3487–3506. https://doi.org/10.1007/s10531-012-0376-1
]Search in Google Scholar
[
Honnay, O., Piessens, K., Van Landuyt, W., Hermy, M., & Gulinck, H. (2003). Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landscape and Urban Planning, 63(4), 241–250. https://doi.org/10.1016/S0169-2046(02)00194-9
]Search in Google Scholar
[
Hoxha, A. (2021). Influence of the Morphodynamic Factors on the Territory of Albania. Knowledge – International Journal, 49(3), 571–576.
]Search in Google Scholar
[
IUSS Working Group, W. R. B. (2006). World reference base for soil resources: A framework for international classification, correlation and communication (2nd ed.). Food and Agriculture Organization of the United Nations.
]Search in Google Scholar
[
Jačková, K., & Romportl, D. (2008). The Relationship Between Geodiversity and Habitat Richness in Šumava National Park and Křivoklátsko PLA (Czech Republic): A Quantitative Analysis Approach. Journal of Landscape Ecology, 1(1), 23–38. https://doi.org/10.2478/v10285-012-0003-6
]Search in Google Scholar
[
Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons – A pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147–156. https://doi.org/10.1016/j.geomorph.2012.11.005
]Search in Google Scholar
[
Kalajnxhiu, A., Tsiripidis, I., & Bergmeier, E. (2012). The diversity of woodland vegetation in Central Albania along an altitudinal gradient of 1,300 m. Plant Biosystems – An International Journal Dealing with All Aspects of Plant Biology, 146(4), 954–969. https://doi.org/10.1080/11263504.2011.634446
]Search in Google Scholar
[
Kopali, A., Peculi, V., Teqja, Z., & Bocari, A. (2013). Study for determination of climatic similarities to different agro-ecological zones of the Albania territory. In D. Kovačević (Ed.), Book of Proceedings – Fourth International Scientific Symposium ‘Agrosym 2013’ (pp. 474–480). University of East Sarajevo.
]Search in Google Scholar
[
Kraja, D., & Albert, G. (2023). Geodiversity assessment of Shkodra Region, Albania. EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7747. https://doi.org/10.5194/egusphere-egu23-7747
]Search in Google Scholar
[
Kraradžić, B., Bulić, Z., Jarić, S., Mitrović, M., & Pavlović, P. (2020). Vegetation in Ravine Habitats of Montenegro. In V. Pešić, M. Paunović, & A. G. Kostianoy (Eds.), The Rivers of Montenegro (Vol. 93, pp. 201–229). Springer International Publishing. https://doi.org/10.1007/698_2020_479
]Search in Google Scholar
[
Lang, S., & Blaschke, T. (2007). Landschaftsanalyse mit GIS (1. Aufl). UTB GmbH.
]Search in Google Scholar
[
Lausch, A., Blaschke, T., Haase, D., Herzog, F., Syrbe, R.-U., Tischendorf, L., & Walz, U. (2015). Understanding and quantifying landscape structure – A review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 295, 31–41. https://doi.org/10.1016/j.ecolmodel.2014.08.018
]Search in Google Scholar
[
Lenaerts, T., Nyssen, J., Spalević, V., & Frankl, A. (2013). Regional geomorphological mapping of Montenegro: Landform genesis and present processes. In D. Kovačević (Ed.), Book of Proceedings – Fourth International Scientific Symposium ‘Agrosym 2013’ (pp. 974–981). University of East Sarajevo.
]Search in Google Scholar
[
Manosso, F. C., Zwoliński, Z., Najwer, A., Basso, B. T., Santos, D. S., & Pagliarini, M. V. (2021). Spatial pattern of geodiversity assessment in the Marrecas River drainage basin, Paraná, Brazil. Ecological Indicators, 126, 107703. https://doi.org/10.1016/j.ecolind.2021.107703
]Search in Google Scholar
[
Martin, C. A., Proulx, R., Vellend, M., & Fahrig, L. (2021). How the relationship between vegetation cover and land-cover variance constrains biodiversity in a human dominated world. Landscape Ecology, 36(11), 3097–3104. https://doi.org/10.1007/s10980-021-01312-9
]Search in Google Scholar
[
Mazzini, I., Gliozzi, E., Galaty, M., Bejko, L., Sadori, L., Soulié-Märsche, I., ..., & Bushati, S. (2016). Holocene evolution of Lake Shkodra: Multidisciplinary evidence for diachronic landscape change in northern Albania. Quaternary Science Reviews, 136, 85–95. https://doi.org/10.1016/j.quascirev.2016.01.006
]Search in Google Scholar
[
Meço, S., & Aliaj, S. (2000). Geology of Albania (R. Bowen, Trans.). Gebrüder Borntraeger. https://books.google.hu/books?id=68RTzgEACAAJ
]Search in Google Scholar
[
Meshi, A., Durmishi, Ç., Prifti, I., Onuzi, K., & Nazaj, S. (2014). Geological transect through the Northern Albanian ophiolites: Stratigraphy, structure and metallogeny. Buletini i Shkencave Gjeologjike, 3, 1–28.
]Search in Google Scholar
[
Metaj, M. (2007). Biodiversity and the Protected Areas System in Albania. Biodiversity, 8(3), 3–10. https://doi.org/10.1080/14888386.2007.9712823
]Search in Google Scholar
[
Milenković, M., Micić, J., & Denda, S. (2020). Tourism and Forest Fires: Problems, Challenges and Possibilities. Book of Proceedings of VIII International Scientific-Practical Conference “Inovative Aspects of the Development Service and Tourism”, 89–94.
]Search in Google Scholar
[
Milivojević, M., Menković, L., & Ćalić, J. (2008). Pleistocene glacial relief of the central part of Mt. Prokletije (Albanian Alps). Quaternary International, 190(1), 112–122. https://doi.org/10.1016/j.quaint.2008.04.006
]Search in Google Scholar
[
Ministres së Bujqësisë dhe Zhvillimit Rural (2024). Programi i Integruar për Zhvillimin Rural – Programi i 100 Fshatrave. https://www.bujqesia.gov.al/programi-i-integruar-per-zhvillimin-rural-programi-i-100-fshatrave-2/
]Search in Google Scholar
[
Nasiri, A., Shafiei, N., & Zandi, R. (2022). Evaluation of Geodiversity Across Noorabad Basin (Fars Province, Iran). Geoheritage, 14(4), 119. https://doi.org/10.1007/s12371-022-00754-0
]Search in Google Scholar
[
Nikolakaki, P. (2004). A GIS site-selection process for habitat creation: Estimating connectivity of habitat patches. Landscape and Urban Planning, 68(1), 77–94. https://doi.org/10.1016/S0169-2046(03)00167-1
]Search in Google Scholar
[
OSM (2024). Main Page–OpenStreetMap Wiki. https://wiki.openstreetmap.org/w/index.php?title=Main_Page&oldid=2741054
]Search in Google Scholar
[
Pál, M., & Albert, G. (2021a). Examining the Spatial Variability of Geosite Assessment and Its Relevance in Geosite Management. Geoheritage, 13(1), 8. https://doi.org/10.1007/s12371-020-00528-6
]Search in Google Scholar
[
Pál, M., & Albert, G. (2021b). Refinement Proposals for Geodiversity Assessment – A Case Study in the Bakony–Balaton UNESCO Global Geopark, Hungary. ISPRS International Journal of Geo-Information, 10(8), 566. https://doi.org/10.3390/ijgi10080566
]Search in Google Scholar
[
Pál, M., & Albert, G. (2023). From geodiversity assessment to geosite analysis – a GIS-aided workflow from the Bakony-Balaton UNESCO Global Geopark, Hungary. Geological Society, London, Special Publications, 530(1), SP530-2022–2126. https://doi.org/10.1144/SP530-2022-126
]Search in Google Scholar
[
Pereira, D. I., Pereira, P., Brilha, J., & Santos, L. (2013). Geodiversity Assessment of Paraná State (Brazil): An Innovative Approach. Environmental Management, 52(3), 541–552. https://doi.org/10.1007/s00267-013-0100-2
]Search in Google Scholar
[
Pielou, E. C. (1969). An introduction to mathematical ecology. Wiley-Interscience.
]Search in Google Scholar
[
Ramezani, H. (2012). A Note on the Normalized Definition of Shannon’s Diversity Index in Landscape Pattern Analysis. Environment and Natural Resources Research, 2(4), p54. https://doi.org/10.5539/enrr.v2n4p54
]Search in Google Scholar
[
Riitters, K., Wickham, J., O’Neill, R., Jones, B., & Smith, E. (2000). Global-scale patterns of forest fragmentation. Conservation Ecology, 4(2). Robertson, A., & Shallo, M. (2000). Mesozoic–Tertiary tectonic evolution of Albania in its regional Eastern Mediterranean context. Tectonophysics, 316(3–4), 197–254. https://doi.org/10.1016/S0040-1951(99)00262-0
]Search in Google Scholar
[
Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological Consequences of Ecosystem Fragmentation: A Review. Conservation Biology, 5(1), 18–32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x
]Search in Google Scholar
[
Schmitz, B., Biermanns, P., Hinsch, R., Ðaković, M., Onuzi, K., Reicherter, K., & Ustaszewski, K. (2020). Ongoing shortening in the Dinarides fold-and-thrust belt: A new structural model of the 1979 (Mw 7.1) Montenegro earthquake epicentral region. Journal of Structural Geology, 141, 104192. https://doi.org/10.1016/j.jsg.2020.104192
]Search in Google Scholar
[
Serjani, A. (2020). Geoheritage and Geotourism in Albania, In B. N. Sadry (Ed.), The Geotourism Industry in the 21st Century: The Origin, Principles, and Futuristic Approach (pp. 169–188). Apple Academic Press. https://doi.org/10.1201/9780429292798
]Search in Google Scholar
[
Serjani, A., Jozla, N., & Neziraj, A. (1998). Geomorphological sites of Albania. Geologica Balcanica, 28, 129–136.
]Search in Google Scholar
[
Serrano, E., & Ruiz-Flańo, P. (2007). Geodiversity: A theoretical and applied concept. Geographica Helvetica, 62(3), 140–147. https://doi.org/10.5194/gh-62-140-2007
]Search in Google Scholar
[
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
]Search in Google Scholar
[
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
]Search in Google Scholar
[
Shuka, L., Mullaj, A., Hoda, P., Kashta, L., & Miho, A. (2017). Overview of the flora and vegetation of the Albanian Alps – The degree of conservation and threats. In F. Millaku, N. Berisha & E. Krasniqi (Eds.), Book of Abstracts of the EADSVE – 37th Meeting. https://doi.org/10.13140/RG.2.2.23064.70400
]Search in Google Scholar
[
Speranza, F., Islami, I., Kissel, C., & Hyseni, A. (1995). Paleomagnetic evidence for Cenozoic clockwise rotation of the external Albanides. Earth and Planetary Science Letters, 129(1–4), 121–134. https://doi.org/10.1016/0012-821X(94)00231-M
]Search in Google Scholar
[
State Authority for Geospatial Information – ASIG (2023). National Geoportal. Monumente Natyre. https://geoportal.asig.gov.al/en
]Search in Google Scholar
[
Stojilković, B. (2022). Towards Transferable Use of Terrain Ruggedness Component in the Geodiversity Index. Resources, 11(2), 22. https://doi.org/10.3390/resources11020022
]Search in Google Scholar
[
Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038i006p00913
]Search in Google Scholar
[
Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity Is a Vital Element of Landscape Structure. Oikos, 68(3), 571. https://doi.org/10.2307/3544927
]Search in Google Scholar
[
Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371(6492), 65–66. https://doi.org/10.1038/371065a0
]Search in Google Scholar
[
Tukiainen, H., Alahuhta, J., Field, R., Ala-Hulkko, T., Lampinen, R., & Hjort, J. (2017). Spatial relationship between biodiversity and geodiversity across a gradient of land-use intensity in high-latitude landscapes. Landscape Ecology, 32(5), 1049–1063. https://doi.org/10.1007/s10980-017-0508-9
]Search in Google Scholar
[
Uuemaa, E., Antrop, M., Roosaare, J., Marja, R., & Mander, Ü. (2009). Landscape metrics and indices: An overview of their use in landscape research. Living Reviews in Landscape Research, 3(1), 1–28.
]Search in Google Scholar
[
van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C., Maffione, M., Vissers, R. L. M., ..., & Spakman, W. (2020). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79–229. https://doi.org/10.1016/j.gr.2019.07.009
]Search in Google Scholar
[
Vlahović, I., Tišljar, J., Velić, I., & Matičec, D. (2005). Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3–4), 333–360. https://doi.org/10.1016/j.palaeo.2005.01.011
]Search in Google Scholar
[
Walz, U. (2011). Landscape structure, landscape metrics and biodiversity. Living Reviews in Landscape Research, 5(3), 1–35.
]Search in Google Scholar
[
Xhomo, A., Dimo, L., Xhafa, Z., Nazaj, X., Nakuçi, V., Yzeiraj, D., ..., & Kodra, A. (2002). Gjeologjia e Shqipërisë Stratigrafia, Magmatizmi, Metamorfizmi, Tektonika, Neotektonika dhe Evolucioni Paleogjeografik dhe Gjeodinamik, 412.
]Search in Google Scholar
[
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J. C., ..., & Bates, P. D. (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44(11), 5844–5853. https://doi.org/10.1002/2017GL072874
]Search in Google Scholar
[
Zaiontz, C. (2024). Real Statistics Using Excel. https://real-statistics.com/
]Search in Google Scholar
[
Zakharovskyi, V., & Németh, K. (2022). Geomorphological Model Comparison for Geosites, Utilizing Qualitative–Quantitative Assessment of Geodiversity, Coromandel Peninsula, New Zealand. Geographies, 2(4), 609–628. https://doi.org/10.3390/geographies2040037
]Search in Google Scholar
[
Zdruli, P. (2005). Soil survey in Albania. In R. Jones, B. Houšková, P. Bullock & L. Montanarella (Eds.), Soil Resources of Europe (pp. 39–44). Office for Official Publications of the European Communities.
]Search in Google Scholar
[
Zwoliński, Z., Najwer, A., & Giardino, M. (2018). Methods for Assessing Geodiversity. In Geoheritage (pp. 27–52). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00002-2
]Search in Google Scholar