1. bookVolumen 16 (2021): Heft 4 (December 2021)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2784-1391
Erstveröffentlichung
12 Apr 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Simulation of Spatially Variable Artificial Earthquake: A Case Study of Different Site Conditions

Online veröffentlicht: 09 Jul 2022
Volumen & Heft: Volumen 16 (2021) - Heft 4 (December 2021)
Seitenbereich: 13 - 24
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2784-1391
Erstveröffentlichung
12 Apr 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

[1] Der Kiureghian, A. (1996). A coherency model for spatially varying ground motions. Earthquake Engineering and Structural Dynamics, 25(1), 99–111. DOI: 10.1002/(sici)1096-9845(199601)25:1<99::aideqe540>3.3.co;2-3. DOI öffnenSearch in Google Scholar

[2] Konakli, K. & Der Kiureghian A. (2012). Simulation of spatially varying ground motions including incoherence, wave-passage and differential site-response effects. Earthquake Engineering & Structural Dynamics,41(3), 495–513. DOI: 10.1002/eqe.1141. DOI öffnenSearch in Google Scholar

[3] Harichandran, RS. (1999). Spatial Variation of Earthquake Ground Motion - What is it, how do we model it, and what are its engineering implications ?, Manuscript corresponding to seminars presented at University of Puerto Rico. Search in Google Scholar

[4] Zerva, A. Spatial variation of seismic ground motions: modeling and engineering applications. CRC Press. DOI: 10.1201/9781420009910. DOI öffnenSearch in Google Scholar

[5] Abrahamson, N. (2008). Ground Motion Models. Geotechnical Earthquake Engineering and Soil Dynamics IV, Reston, VA: American Society of Civil Engineers. DOI: 10.1061/40975(318)2. DOI öffnenSearch in Google Scholar

[6] Zendagui, D. Berrah, MK. & Kausel E. (1999). Stochastic deamplification of spatially varying seismic motions. Soil Dynamics and Earthquake Engineering, 18(6), 409–421. DOI: 10.1016/S0267-7261(99)00015-9. DOI öffnenSearch in Google Scholar

[7] Zendagui, D. & Berrah MK. (2002). Spatial variation of seismic motion induced by propagation of body waves. Soil Dynamics and Earthquake Engineering, 22(9–12), 805–811. DOI: 10.1016/S0267-7261(02)00102-1. DOI öffnenSearch in Google Scholar

[8] Zerva, A. & Shinozuka M. (1991). Stochastic differential ground motion. Structural Safety, 10(1–3), 129–143. DOI: 10.1016/0167-4730(91)90010-7. DOI öffnenSearch in Google Scholar

[9] Zerva, A. (1992). Seismic loads predicted by spatial variability models. Structural Safety, 11(3–4), 227–243. DOI: 10.1016/0167-4730(92)90016-G. DOI öffnenSearch in Google Scholar

[10] Harichandran, RS. & Vanmarcke EH. (1986). Stochastic variation of earthquake ground motion in space and time. Journal of Engineering Mechanics, 112(2), 154–174. DOI: 10.1061/(asce)0733-9399(1986)112:2(154). DOI öffnenSearch in Google Scholar

[11] Bi, K. Hao H. & Ren W. (2010). Response of a frame structure on a canyon site to spatially varying ground motions. Structural Engineering and Mechanics, 36(1), 111–127. DOI: 10.12989/sem.2010.36.1.111. DOI öffnenSearch in Google Scholar

[12] Derbal, R. Benmansour, N. Djafour, M. Matallah M. & Ivorra S. (2019). Viaduct seismic response under spatial variable ground motion considering site conditions. Earthquake and Structures, 17(6), 557–566. DOI: 10.12989/eas.2019.17.6.557. DOI öffnenSearch in Google Scholar

[13] Derbal, R. Benmansour, N. Djafour, M. Matallah M. & Ivorra S. (2021). Sensitivity of spatial variable seismic ground motion to multiple local site conditions. 9th Turkish Conference on Earthquake Engineering (9TCEE), 2-3 june 2021 (pp. 434-441). Istanbul, Turkey. Search in Google Scholar

[14] Sextos, A. Karakostas, C. Lekidis V. & Papadopoulos S. (2015). Multiple support seismic excitation of the Evripos bridge based on free-field and on-structure recordings. Structure and Infrastructure Engineering, 11(11). DOI: 10.1080/15732479.2014.977302. DOI öffnenSearch in Google Scholar

[15] Zerva, A. & Stephenson WR. (2011). Stochastic characteristics of seismic excitations at a non-uniform (rock and soil) site. Soil Dynamics and Earthquake Engineering, 31(9), 1261–1284. DOI: 10.1016/j.soildyn.2011.05.006. DOI öffnenSearch in Google Scholar

[16] Fontara, IK. Titirla, MD. Wuttke, F. Athanatopoulou, AM. Manolis GD. & Sextos AG. (2015). Multiple support excitation of a bridge based on a BEM analysis of the subsoil-structure interaction phenomenon. COMPDYN 2015 and 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering At: Crete Island, Greece. Search in Google Scholar

[17] Bard, PY. Campillo, M. Chavez-Garcia FJ. & Sanchez-Sesma F. (1988). Mexico earthquake of September 19, 1985 - a theoretical investigation of large- and small-scale amplification effects in the Mexico City valley. Earthquake Spectra, 4(3), 609–633. DOI: 10.1193/1.1585493. DOI öffnenSearch in Google Scholar

[18] Wang, S. & Hao H. (2002). Effects of random variations of soil properties on site amplification of seismic ground motions. Soil Dynamics and Earthquake Engineering, 22(7), 551–564. DOI: 10.1016/S0267-7261(02)00038-6. DOI öffnenSearch in Google Scholar

[19] Bi, K. & Hao H. (2012). Modelling and simulation of spatially varying earthquake ground motions at sites with varying conditions. Probabilistic Engineering Mechanics, 29, 92–104. DOI: 10.1016/j.probengmech.2011.09.002. DOI öffnenSearch in Google Scholar

[20] Zhang, DY. Liu, W. Xie WC. & Pandey MD. (2013). Modeling of spatially correlated, site-reflected, and nonstationary ground motions compatible with response spectrum. Soil Dynamics and Earthquake Engineering, 55, 21–32. DOI: 10.1016/j.soildyn.2013.08.002. DOI öffnenSearch in Google Scholar

[21] Derbal, R. Benmansour N. & Djafour M. (2018). Impact of spatial variability of earthquake ground motion on seismic response of a railway bridge. International Journal of Computational Methods and Experimental Measurements, 6(3), 910–920. DOI: 10.2495/cmem-v6-n5-910-920. DOI öffnenSearch in Google Scholar

[22] Adanur, S. Altunişik, AC. Soyluk, K. Bayraktar A. & Dumanoğlu AA. (2016). Multiple-support seismic response of Bosporus Suspension Bridge for various random vibration methods. Case Studies in Structural Engineering, 5, 54–67. DOI: 10.1016/j.csse.2016.04.001. DOI öffnenSearch in Google Scholar

[23] Li, C. Li, H. Hao, H. Bi K. & Tian L. (2018). Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites. Earthq Eng & Eng Vib, 17(3), 475–490. DOI: 10.1007/s11803-018-0456-7. DOI öffnenSearch in Google Scholar

[24] Shiravand, MR. & Parvanehro P. (2019). Spatial variation of seismic ground motion effects on nonlinear responses of cable stayed bridges considering different soil types. Soil Dynamics and Earthquake Engineering, 119, 104–117. DOI: 10.1016/j.soildyn.2019.01.002. DOI öffnenSearch in Google Scholar

[25] Boudina, A. & Hammoutene M. (2020). Generation of seismic excitations compatible with target spectrum: application to Eurocode 8. World Journal of Engineering, 18(1), 122–135. DOI: 10.1108/WJE-02-2020-0042. DOI öffnenSearch in Google Scholar

[26] Liu, G. Liu, Y. Han B. & Lian J. (2020). Theoretical and numerical approach for simulating spatially variable seismic underground motions in layered saturated media. Journal of Earthquake Engineering, 24(4), 601–627. DOI: 10.1080/13632469.2018.1452809. DOI öffnenSearch in Google Scholar

[27] Loyola, L. Rojas F. & Ruiz RO. (2021). Synthetic stochastic ground motions compatible with the Chilean seismic hazard. Engineering Structures, 228. DOI: 10.1016/j.engstruct.2020.111471. DOI öffnenSearch in Google Scholar

[28] Muscolino, G. Genovese, F. Biondi G. & Cascone E. (2021). Generation of fully non-stationary random processes consistent with target seismic accelerograms. Soil Dynamics and Earthquake Engineering, 141: 106467. DOI: 10.1016/J.SOILDYN.2020.106467. DOI öffnenSearch in Google Scholar

[29] Rodda, GK. & Basu D. (2018). Spatial variation and conditional simulation of seismic ground motion. Bulletin of Earthquake Engineering, 16(10), 4399–4426. DOI: 10.1007/s10518-018-0397-6. DOI öffnenSearch in Google Scholar

[30] Rodda, GK. & Basu D. (2020). Spatially correlated vertical ground motion for seismic design. Engineering Structures, 206, 110191. DOI: 10.1016/j.engstruct.2020.110191. DOI öffnenSearch in Google Scholar

[31] Benmansour, N. (2013). Effet de la variabilité spatiale du mouvement sismique sur le comportement dynamique des ponts. University of Tlemcen – Aboubakr Belkaid, Tlemcen, Algeria. Search in Google Scholar

[32] Benmansour, N. Djafour, M. Bekkouche, A. Zendagui D. & Benyacoub A. (2012). Seismic response evaluation of bridges under differential ground motion: A comparison with the new Algerian provisions. European Journal of Environmental and Civil Engineering, 16(7), 863–881. DOI: 10.1080/19648189.2012.681951. DOI öffnenSearch in Google Scholar

[33] Wolf, JP. (1985). Dynamic Soil-Structure Interaction. Search in Google Scholar

[34] Şafak, E. (1995). Discrete-Time Analysis of Seismic Site Amplification. Journal of Engineering Mechanics, 121(7), 801–809. DOI: 10.1061/(asce)0733-9399(1995)121:7(801). DOI öffnenSearch in Google Scholar

[35] Deodatis, G. (1996). Non-stationary stochastic vector processes: Seismic ground motion applications. Probabilistic Engineering Mechanics, 11(3), 149–167. DOI: 10.1016/0266-8920(96)00007-0. DOI öffnenSearch in Google Scholar

[36] Bi, K. & Hao H. (2012). Influence of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines. Structural Engineering and Mechanics, 44, 663-680. DOI: 10.12989/sem.2012.44.5.663. DOI öffnenSearch in Google Scholar

[37] Jennings, PC. Housner GW. & Tsai NC. (1968). Simulated earthquake motions. A report on research conducted under a grant from the National Science Foundation, Pasadena, California, USA. Search in Google Scholar

[38] Clough, RW. & Penzien J. (1993). Dynamics of structures. 2nd edition. New York: mcgraw-Hill. Search in Google Scholar

[39] Tajimi, HA. (1960). Statistical method of determining the maximum response of a building structure during an earthquake. In: Proceedings of the second world conference Engineering E, editor., Tokyo and Kyoto, Japan, 1960. Search in Google Scholar

[40] MTP, (2010). Règles parasismiques applicables au domaine des ouvrages d’art. Ministère des Travaux Publics, Alger. Search in Google Scholar

[41] CEN, (2004). Eurocode 8: Design provisions of structures for earthquake resistance-part1: General rules, Seismic Actions and Rules for buildings, EN1998-1:2004. Brussels, Belgium. Search in Google Scholar

[42] Li, C. Hao, H. Li, H. Bi K. & Chen B. (2017). Modeling and simulation of spatially correlated ground motions at multiple onshore and offshore sites. Journal of Earthquake Engineering, 21(3), 359-383. DOI: 10.1080/13632469.2016.1172375. DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo