Uneingeschränkter Zugang

Hypericum Perforatum L. Hairy Root Extracts – Regulation of Glycemic, Metabolic, Serum Enzyme and Lipid Profile in STZ - Induced Diabetic Rats


Zitieren

1. May, L.D., Lefkowitch, J.H., Kram, M.T., Rubin, D.E. (2002). Mixed hepatocellular-cholestatic liver injury after pioglitazone therapy. Ann Intern Med. 136(6): 449-452. https://doi.org/10.7326/0003-4819-136-6-200203190-00008 PMid:1190049710.7326/0003-4819-136-6-200203190-0000811900497Search in Google Scholar

2. Sun, J.E., Ao, Z.H., Lu, Z.M., Xu, H.Y., Zhang, X.M., Dou, W.F., Xu, Z.H. (2008). Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol. 118(1): 7-13. https://doi.org/10.1016/j.jep.2008.02.030 PMid:1843405110.1016/j.jep.2008.02.03018434051Search in Google Scholar

3. Li, W., Zheng, L., Sheng, C., Cheng, X., Qing, L., Qu, S. (2011). Systematic review on the treatment of pentoxifylline in patients with non-alcoholic fatty liver disease. Lipids Health Dis. 10, 49. https://doi.org/10.1186/1476-511X-10-49 PMid:21477300 PMCid:PMC308889010.1186/1476-511X-10-49308889021477300Search in Google Scholar

4. Nahrstedt, A., Butterweck, V. (2010). Lessons learned from herbal medicinal products: the example of St. John’s wort. J Nat Prod. 73(5): 1015-1021. https://doi.org/10.1021/np1000329 PMid:2040855110.1021/np100032920408551Search in Google Scholar

5. Velingkar, V.S., Gupta, G.L., Hegde, N.B. (2017). A current update on phytochemistry, pharmacology and herb-drug interactions of Hypericum perforatum. Phytochem Rev. 16(4): 725-744. https://doi.org/10.1007/s11101-017-9503-710.1007/s11101-017-9503-7Search in Google Scholar

6. Asgarpanah, J. (2012). Phytochemistry, pharmacology and medicinal properties of Hypericum perforatum L. Afr J Pharmacy and Pharmacol. 6(19): 1387-1394. https://doi.org/10.5897/AJPP12.24810.5897/AJPP12.248Search in Google Scholar

7. Fomenko, E.V., Chi, Y. (2016). Mangiferin modulation of metabolism and metabolic syndrome. Biofactors 42(5): 492-503. https://doi.org/10.1002/biof.1309 PMid:27534809 PMCid:PMC507770110.1002/biof.1309507770127534809Search in Google Scholar

8. Apontes, P., Liu, Z., Su, K., Benard, O., Youn, D.Y., Li, X., Li, W., et al. (2014). Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 63(11): 3626-3636. https://doi.org/10.2337/db14-0006 PMid:24848064 PMCid:PMC420739910.2337/db14-0006420739924848064Search in Google Scholar

9. Ibrahim, S.R., Abdallah, H.M., El-Halawany, A.M., Nafady, A.M., Mohamed, G.A. (2019). Mangostanaxanthone VIII, a new xanthone from Garcinia mangostana and its cytotoxic activity. Nat Prod Res. 33(2): 258-265. https://doi.org/10.1080/14786419.2018.1446012 PMid:2951304010.1080/14786419.2018.144601229513040Search in Google Scholar

10. Ratwita, W., Sukandar, E.Y., Adnyana, I.K., Kurniati, N.F. (2019). Alpha mangostin and Xanthone activity on fasting blood glucose, insulin and langerhans Islet of langerhans in Alloxan induced diabetic mice. Pharmacogn J. 11(1): 64-68. https://doi.org/10.5530/pj.2019.1.1210.5530/pj.2019.1.12Search in Google Scholar

11. Malik, A., Ardalani, H., Anam, S., McNair, L.M., Kromphardt, K.J., Frandsen, R.J.N., Franzyk, H., et al. (2020). Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia 142, 104522. https://doi.org/10.1016/j.fitote.2020.104522 PMid:3208828110.1016/j.fitote.2020.104522Search in Google Scholar

12. Husain, G.M., Singh, P.N., Kumar, V. (2009). Beneficial effects of a standardized Hypericum perforatum extract in rats with experimentally induced hyperglycemia. Drug Discov Ther. 3(5): 215-220.Search in Google Scholar

13. Arokiyaraj, S., Balamurugan, R., Augustian, P. (2011). Antihyperglycemic effect of Hypericum perforatum ethyl acetate extract on streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed. 1(5): 386-390. https://doi.org/10.1016/S2221-1691(11)60085-310.1016/S2221-1691(11)60085-3Search in Google Scholar

14. Can, Ö.D., Öztürk, Y., Öztürk, N., Sagratini, G., Ricciutelli, M., Vittori, S., Maggi, F. (2011). Effects of treatment with St. John’s Wort on blood glucose levels and pain perceptions of streptozotocin-diabetic rats. Fitoterapia 82(4): 576-584. https://doi.org/10.1016/j.fitote.2011.01.008 PMid:2126233110.1016/j.fitote.2011.01.00821262331Search in Google Scholar

15. Moghadam, M.G., Ansari, I., Roghani, M., Ghanem, A., Mehdizade, N. (2017). The effect of oral administration of Hypericum perforatum on serum glucose and lipids, hepatic enzymes and lipid peroxidation in streptozotocin-induced diabetic rats. Galen Medical J. 6(4): 319-329.10.31661/gmj.v6i4.889Search in Google Scholar

16. Tocci, N., Gaid, M., Kaftan, F., Belkheir, A.K., Belhadj, I., Liu, B., Svatoš, A., et al. (2018). Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytologist 217(3): 1099-1112. https://doi.org/10.1111/nph.14929 PMid:2921008810.1111/nph.1492929210088Search in Google Scholar

17. Tusevski, O., Krstikj, M., Petreska Stanoeva, J., Stefova, M., Gadzovska Simic, S. (2019). Phenolic compounds composition of Hypericum perforatum L. wild-growing plants from the Republic of Macedonia. Agric Conspec Sci. 84(1): 67-75.Search in Google Scholar

18. Tusevski, O., Petreska Stanoeva, J., Stefova, M., Kungulovski, Dz., Atanasovsa Pancevska, N., Sekulovski, N., Panov, S., Gadzovska Simic, S. (2013). Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Cent Eur J Biol. 8(10): 1010-1022. https://doi.org/10.2478/s11535-013-0224-710.2478/s11535-013-0224-7Search in Google Scholar

19. Tusevski, O., Vinterhalter, B., Milošević, D.K., Soković, M., Ćirić, A., Vinterhalter, D., Korać, S.Z., et al. (2017). Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. PCTOC 128(3): 589-605. https://doi.org/10.1007/s11240-016-1136-910.1007/s11240-016-1136-9Search in Google Scholar

20. Gadzovska, S., Maury, S., Ounnar, S., Righezza, M., Kascakova, S., Refregiers, M., Spasenoski, M., et al. (2005). Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem. 43(6): 591-601. https://doi.org/10.1016/j.plaphy.2005.05.005 PMid:1597931510.1016/j.plaphy.2005.05.00515979315Search in Google Scholar

21. Idries, A.M., Ahmed, M.E., Mudawi, M.E., Ibrahim, K.E. (2012). Interchangeability and comparative effectiveness between micronized and non-micronized products of glibenclamide tablets. Sudan JMS. 7(3): 153-159.Search in Google Scholar

22. Li, Y., Peng, G., Li, Q., Wen, S., Huang, T.H.W., Roufogalis, B.D., Yamahara, J. (2004). Salacia oblonga improves cardiac fibrosis and inhibits postprandial hyperglycemia in obese Zucker rats. Life Sci. 75(14): 1735-1746. https://doi.org/10.1016/j.lfs.2004.04.013 PMid:1526897310.1016/j.lfs.2004.04.01315268973Search in Google Scholar

23. Fouotsa, H., Lannang, A.M., Mbazoa, C.D., Rasheed, S., Marasini, B.P., Ali, Z., Devkota, K.P., et al. (2012). Xanthones inhibitors of α-glucosidase and glycation from Garcinia nobilis. Phytochem Lett. 5(2): 236-239. https://doi.org/10.1016/j.phytol.2012.01.00210.1016/j.phytol.2012.01.002Search in Google Scholar

24. Szkudelski, T., Szkudelska, K. (2002). Streptozotocin induces lipolysis in rat adipocytes in vitro. Physiol Res. 51(3): 255-259.Search in Google Scholar

25. Moodley, K., Joseph, K., Naidoo, Y., Islam, S., Mackraj, I. (2015). Antioxidant, antidiabetic and hypolipidemic effects of Tulbaghia violacea Harv. (wild garlic) rhizome methanolic extract in a diabetic rat model. BMC Complement Altern Med. 15, 408. https://doi.org/10.1186/s12906-015-0932-9 PMid:26577219 PMCid:PMC464732210.1186/s12906-015-0932-9464732226577219Search in Google Scholar

26. Kondeti, V.K., Badri, K.R., Maddirala, D.R., Thur, S.K.M., Fatima, S.S., Kasetti, R.B., Rao, C.A. (2010). Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol. 48(5): 1281-1287. https://doi.org/10.1016/j.fct.2010.02.023 PMid:2017882410.1016/j.fct.2010.02.02320178824Search in Google Scholar

27. Lim, J., Liu, Z., Apontes, P., Feng, D., Pessin, J.E., Sauve, A.A., Angeletti, R.H., Chi, Y. (2014). Dual mode action of mangiferin in mouse liver under high fat diet. PloS One 9(6): e100170. https://doi.org/10.1371/journal.pone.0100170 PMCid:PMC406112810.1371/journal.pone.0100170Search in Google Scholar

28. Xing, X., Li, D., Chen, D., Zhou, L., Chonan, R., Yamahara, J., Wang, J., Li, Y. (2014). Mangiferin treatment inhibits hepatic expression of acylcoenzyme A: diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver. Toxicol Appl Pharmacol. 280(2): 207-215. https://doi.org/10.1016/j.taap.2014.08.001 PMid:2512378910.1016/j.taap.2014.08.00125123789Search in Google Scholar

29. Zhou, G.Y., Yi, Y.X., Jin, L.X., Lin, W., Fang, P.P., Lin, X.Z., Zheng, L., Pan, C.W. (2016). The protective effect of juglanin on fructose-induced hepatitis by inhibiting inflammation and apoptosis through TLR4 and JAK2/STAT3 signaling pathways in fructose-fed rats. Biomed Pharmacother. 81, 318-328. https://doi.org/10.1016/j.biopha.2016.04.013 PMid:2726160910.1016/j.biopha.2016.04.01327261609Search in Google Scholar

30. Na, L., Zhang, Q., Jiang, S., Du, S., Zhang, W., Li, Y., Changhao, S., Niu, Y. (2015). Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep. 5, 10344. https://doi.org/10.1038/srep10344 PMid:25989216 PMCid:PMC443731110.1038/srep10344443731125989216Search in Google Scholar

31. Karim, N., Tangpong, J. (2018). Biological properties in relation to health promotion effects of Garcinia mangostana (queen of fruit): A short report. J Health Res. 32(5): 364-370. https://doi.org/10.1108/JHR-08-2018-04310.1108/JHR-08-2018-043Search in Google Scholar

32. Juárez-Rojop, I.E., Díaz-Zagoya, J.C., Ble-Castillo, J.L., Miranda-Osorio, P.H., Castell-Rodríguez, A.E., Tovilla-Zárate, Rodríguez-Hernández, A., et al. (2012). Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 12, 236. https://doi.org/10.1186/1472-6882-12-236 PMid:23190471 PMCid:PMC355183510.1186/1472-6882-12-236355183523190471Search in Google Scholar

33. Ghorbani, Z., Hekmatdoost, A., Mirmiran, P. (2014). Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int J Endocrinol Metab. 12(4): e18081. https://doi.org/10.5812/ijem.18081 PMid:25745485 PMCid:PMC433865210.5812/ijem.18081433865225745485Search in Google Scholar

34. Mahendran, G., Manoj, M., Murugesh, E., Kumar, R.S., Shanmughavel, P., Prasad, K.R., Bai, V.N. (2014). In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-β-D-xylopyranosyl isolated from Swertia corymbosa. Phytomedicine 21(11): 1237-1248. https://doi.org/10.1016/j.phymed.2014.06.011 PMid:2517278510.1016/j.phymed.2014.06.01125172785Search in Google Scholar

35. As’ari, H., Mahartini, D.M. (2016). The effect of administering mangosteen rind extract (Garnicia mangostana l) compared with glimepiride to the blood sugar levels of white male rat (Rattus norwegicus l) induced by streptozotocin. Folia Medica Indonesiana 52(4): 241-245. https://doi.org/10.20473/fmi.v52i4.546910.20473/fmi.v52i4.5469Search in Google Scholar

eISSN:
1857-7415
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere, Medizin, Vorklinische Medizin, Grundlagenmedizin, Veterinärmedizin