This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Esmonde-White, K., Lewis, M., & Lewis, I. R. (2022). Direct Measurement of Chocolate Components Using Dispersive Raman Spectroscopy at 1000 nm Excitation. Applied Spectroscopy, 77 (3), 320–326.Search in Google Scholar
Escoriza, M. F., Vanbriesen, J. M., Stewart, S., & Maier, J. (2006). Studying Bacterial Metabolic States Using Raman Spectroscopy. Applied Spectroscopy, 60 (9), 971–976.Search in Google Scholar
Xu, Y., Zhu, D., Song, Y., Zheng, X., & You, X. (2006). Hydrothermal Synthesis and Crystal Structure of the Novel Mixed Mo/V Meta-l-Oxygen Cluster Compound [Co(C2N2H8)(3)](4)[(Mo2Mo14V16O80)-Mo-V-V-VI-O-IV (PO4)(2)]Center Dot 10H(2)O Containing the Two Types of Typical Heteropoly Anions. The Journal of Molecular Structure, 782 (2), 165–170.Search in Google Scholar
Sharma, A., Kaur, S., Mahajan C. G., Tripathi, S. K., & Saini, S. S. G. (2007). Fourier Transform Infrared Spectral Study of N, N′-Dimethylformamide-Water-Rhodamine 6G Mixture. Molecular Physics, 105 (1), 117–123.Search in Google Scholar
Kanan, P. P., Arivazhagan, G., Sangeetha, T., Karthick, N. K., & Kumbharkhane A. C. (2021). FTIR Studies, DFT Calculations, and Time Domain Reflectometry Studies on TGF-Methanol Binary Solutions. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 248, 119289.Search in Google Scholar
Dwivedi, A., Baboo, V., & Bajpai. A. (2015). Fukui Function Analysis and Optical, Electronic, and Vibrational Properties of Tetrahydrofuran and Its Derivatives: A Complete Quantum Chemical Study. Journal of Theoretical Chemistry, 345234.Search in Google Scholar
Ohashi, K., & Takeshita, H., (2021). Infrared Spectroscopic and Computational Studies of Co (ClO4)2 Dissolved in N, N-Dimethylformamide. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 248, 119289.Search in Google Scholar
Chalapathi, V. V., & Ramiah. K. V. (1966). Normal Vibrations of N, N-Dimethylformamide and N, N-Dimethylacetamide. Proc. lnd. Acad. Sci, 64, 148.Search in Google Scholar
Tomar, D., Rana, B., & Jena. K. C. (2020). The Structure of Water–DMF Binary Mixtures Probed by Linear and Nonlinear Vibrational Spectroscopy. Journal of Chemical Physics, 152 (11), 114707.Search in Google Scholar
Xu, Z., Li, H., Wang, C., Pan, H., & Han. S. (2006). The Methyl C–H Blueshift in N, N-Dimethylformamide-Water Mixtures Probed by Two-Dimensional Fourier-Transform Infrared Spectroscopy. Journal of Chemical Physics, 124 (24), 244502.Search in Google Scholar
Biliškov, N., & Baranović, G. (2009). Infrared Spectroscopy of Liquid Water–N, N-Dimethylformamide Mixtures. The Journal of Molecular Liquids, 144 (3), 155–162.Search in Google Scholar
Martínez-Reina, M., Amado-González, E., & Goméz-Jaramillo, W. (2015). Experimental Study and Modeling of the Refractive Indices in Binary and Ternary Mixtures of Water with Methanol, Ethanol and Propan-1-ol at 293.15 K. Journal of Solution Chemistry, 44 (2), 206–222.Search in Google Scholar
Gofurov, Sh., Makhmanov, U., Kokhkharov, A., & Ismailova, O. B. (2019). Structural and Optical Characteristics of Aqueous Solutions of Acetic Acid. Applied Spectroscopy, 73 (5), 503–510.Search in Google Scholar
Tomikawa, K., Kanno, H., & Kimoto, H. (2004). A Raman Study of Aqueous DMF and DMA Solutions at Low Temperatures. Canadian Journal of Chemistry, 82 (10), 1468–1473.Search in Google Scholar
Pansare, K., Singh, S. R., Chakravarthy, V., Gupta, N., Hole, A., Gera, P., … & Krishna. C. M. (2020). EXPRESS: Raman Spectroscopy: An Exploratory Study to Identify Post-Radiation Cell Survival. Applied Spectroscopy, 74 (5), 000370282090835.Search in Google Scholar
Bozorova, D. T., Gofurov, Sh. P., Kokhkharov. A. M., & Ismailova O. B. (2021). Terahertz Spectroscopy of Aqueous Solutions of Acetic Acid. Journal of Applied Spectroscopy, 88 (4), 719–722.Search in Google Scholar
Globus, T. R., Woolard, D. L., Khromova, T., Crowe, T. W., Bykhovskaia, M., Gelmont, B. L., … & Samuels, A.C. (2003). THz-Spectroscopy of Biological Molecules. Journal of Biological Physics, 29, 89–100.Search in Google Scholar
Ye, P., Meng, Q., Wang, G., Huang, H., Yang, Y., Su, B., & Zhang, C. (2022). Terahertz Spectroscopic Detection of Amino Acid Molecules under Magnetic Field. Heliyon., 8 (11), 11414.Search in Google Scholar
Wei, L., Yu, L., Jiaoqi, H., Guorong, H., Yang, Zh., & Weiling. F. (2018). Application of Terahertz Spectroscopy in Biomolecule Detection. Frontiers in Laboratory Medicine, 2 (1), 127–133.Search in Google Scholar
Lee. Y. S. (2009).Terahertz Spectroscopy of Atoms and Molecules. Principles of Terahertz Science and Technology. Springer, Boston, MA.Search in Google Scholar
Mathlouthi, M. (1981). X-ray Diffraction Study of the Molecular Association in Aqueous Solutions of d-Fructose, d-Glucose, and Sucrose. Carbohydrate Research, 91 (2), 113–123.Search in Google Scholar
Kruh, R. F., & Standley, C. L. (1962). An X-Ray Diffraction Study of Aqueous Zinc Chloride Solutions. Inorganic Chemisty, 1 (4), 941–943.Search in Google Scholar
Adams, R., Balyuzi, H. H. M., & Burge, R. E. (1977). X-Ray Diffraction Studies of Aqueous Solutions of Urea. J. Appl. Cryst., 10, 256–261.Search in Google Scholar
Gioacchino, M. Di., Bruni, F., & Ricci, M. A. (2019). N-Methylacetamide Aqueous Solutions: A Neutron Diffraction Study. J. Phys. Chem. B. 123 (8), 1808–1814.Search in Google Scholar
Kameda, Y., & Uemura, O. (1993). Neutron Diffraction Study on the Structure of Highly Concentrated Aqueous LiBr Solutions. Bulletin of the Chemical Society of Japan, 66 (2), 384–389.Search in Google Scholar
Ender, J. E. (1980). Neutron Diffraction, Isotopic Substitution and the Structure of Aqueous Solutions. Phil. Trans R. Soc. London. B, Biological Sciences, 290, 553–566.Search in Google Scholar
Yamaguchi, T., Yoshida, K., Machida, Sh., & Hattori, T. (2022). Neutron Scattering on an Aqueous Sodium Chloride Solution in the Gigapascal Pressure Range. The Journal of Molecular Liquids, 365 (1), 120181.Search in Google Scholar
Soper, A. K., Neilson, G. W., Enderby, J. E., & Howe, R. A. (1977). A Neutron Diffraction Study of Hydration Effects in Aqueous Solutions. Journal of Physics C: Solid State Physics, 10, 1793.Search in Google Scholar
Takahashi, H., Oue, T., & Sakai, M. (2020). Resonance IR Spectroscopy in Aqueous Solution by Combining IR Super-Resolution with TFD-IR Method. Chemical Physics Letters, 758, 137942.Search in Google Scholar
Rabenstein, D. L., & Fan, S. (1986). Proton Nuclear Magnetic Resonance Spectroscopy of Aqueous Solutions: Complete Elimination of the Water Resonance by Spin-Spin Relaxation. Analytical Chemistry, 58 (14), 3178–3184.Search in Google Scholar
Martin, A., Nicholas, P., & Wasylishen, R. E. (1987). A Nuclear Magnetic Resonance Study of Aqueous Solutions of Several Nitrate Salts. The Canadian Journal of Chemistry, 65 (5), 951–956.Search in Google Scholar
Kokhkharov, A. M., Zakhidov, E. A., Gofurov, Sh. P., Bakhramov, S. A., & Makhmanov, U. K. (2013). Clusterization of Fullerene C70 Molecules in Solutions and Its Influence to Optical and Nonlinear Optical Properties of Solutions. International Journal of Nanoscience, 12 (4), 1350027.Search in Google Scholar
Patel, R. B., Stepanov, V., & Qiu, H. (2016). Dependence of Raman Spectral Intensity on Crystal Size in Organic Nano Energetics. Applied Spectroscopy, 70 (8), 1339–1345.Search in Google Scholar
Plastinin, I. V., Burikov, S. A., Gofurov, Sh. P., Ismailova, O. B., Mirgorod, Y., & Dolenko, T. A. (2020). Features of Self-Organization of Sodium Dodecyl-Sulfate in Water-Ethanol solutions: Theory and Vibrational Spectroscopy. Journal of Molecular Liquids, 298, 112053.Search in Google Scholar
Cholli, A. L., & Lau, M. L. (1989). Simultaneous Detection of Optical Isomers and the Separation of Overlapping Resonances in a 1H NMR Spectrum of (+/-)-2,2-Dimethyl-1-Phenyl-1-Propanol Using an NMR Shift Reagent. Applied Spectroscopy, 43 (7), 1168–1172.Search in Google Scholar
Ismailova, O. B., Akhmedov, T. Kh., Igamberdiev, Kh. T., Mamatkulov, S. I., Saidov, A. A., Tursunov, S. O., & Khabibullaev, P.K. (2005). Heat-Capacity Anomaly in a Wide Vicinity of the Critical Point of the Triethylamine-Water Phase Transition. Journal of Engineering Physics and Thermophysics, 78 (5), 1040–1045.Search in Google Scholar
Larive, C. K., Jayawickrama, D., & Orfi, L. (1997). Quantitative Analysis of Peptides with NMR Spectroscopy. Applied Spectroscopy, 51 (10), 1531–1536.Search in Google Scholar
Flores-Castañeda, M., & Camacho-Lopez, S. (2023). Si Nanoparticle Decorated Bi2O2CO3 2D Nanocomposite Synthesized by Femtosecond Laser Ablation of Solids in Liquids and Aging. Optics and Laser Technology, 158, 108891.Search in Google Scholar
Xu, Y., Zhu, D., Song, Y., Zheng, X., & You, X. (2006). Hydrothermal Synthesis and Crystal Structure of the Novel Mixed Mo/V Meta-l-Oxygen Cluster Compound [Co(C2N2H8)(3)](4)[(Mo2Mo14V16O80)-Mo-V-V-VI-O-IV (PO4)(2)]Center Dot 10H(2)O Containing the Two Types of Typical Heteropoly Anions. The Journal of Molecular Structure, 782 (2), 165–170.Search in Google Scholar
Mizuno, K. (2009). Roles of the Ether Oxygen in Hydration of TGF studied by IR, NMR and DFT Calculation Methods. Journal of Physical Chemistry B, 113 (4), 906–915.Search in Google Scholar
Weisenberger, L. A., & Koenig, J. L. (1989). NMR Imaging of Solvent Diffusion in Polymers. Applied Spectroscopy, 43 (7), 1117–1126.Search in Google Scholar
Davies, A. N., & Lampen, P. (1993). JCAMPDX for NMR. Applied Spectroscopy, 47 (8), 1093–1099.Search in Google Scholar
Fischer, J. W., Merwin, L. H., & Nissan, R. A. (1995). NMR Investigation of the Thermolysis of Citric Acid. Applied Spectroscopy, 49 (1), 120–126.Search in Google Scholar
Larive, C. K., Jayawickrama, D., & Orfi, L. (1997) Quantitative Analysis of Peptides with NMR Spectroscopy. Applied Spectroscopy, 51 (10), 1531–1536.Search in Google Scholar
Shastri, A., Das, A. K., Krishnakumar, S., Singh, P. J., & Raja Sekhar, B. N. (2017). Spectroscopy of N, N-dimethylformamide in the VUV and IR Regions: Experimental and Computational Studies. Journal of Chemical Physics, 147 (22), 224305.Search in Google Scholar
Mao, J. X., Walsh, P., Kroll, P., & Schug, K. A. (2019). Simulation of Vacuum Ultraviolet Absorption Spectra: Paraffin, Isoparaffin, Olefin, Naphthene, and Aromatic Hydrocarbon Class Compounds. Applied Spectroscopy, 74 (2), 72–80.Search in Google Scholar
Cruse, C., Pu, J., & Goodpaster, J. V. (2020). EXPRESS: Identifying Thermal Decomposition Products of Nitrate Ester Explosives Using Gas Chromatography– Vacuum Ultraviolet Spectroscopy: An Experimental and Computational Study. Applied Spectroscopy, 74 (12), 1486–1495.Search in Google Scholar
Heravi, M. M., Ghavidel, M., & Mohammadkhan, L. (2018). Beyond a Solvent: Triple Roles of Dimethylformamide in Organic Chemistry. RSC Adv., 8 (49), 27832–27862.Search in Google Scholar
Muzart, J. (2009). N, N-Dimethylformamide: Much More than a Solvent. Tetrahedron, 65 (40), 8313–8323.Search in Google Scholar
Zhu, Y., Yang, J., Mei, F., Li, X., & Zhao, Ch. 2022). Bio-Based 1,4-Butanediol and Tetrahydrofuran Synthesis: Perspective. Green Chemistry, 24, 6450–6466.Search in Google Scholar
Angle, S. R., & El-Said, N. A. (2002). Stereoselective Synthesis of Tetrahydrofurans via Formal [3+2]-Cycloaddition of Aldehydes and Allylsilanes. Formal Total Synthesis of the Muscarine Alkaloids (−)-Allomuscarine and (+)-Epimuscarin. Journal of the American Chemical Society, 124 (14), 3608–3613.Search in Google Scholar
Sałdyka, M., Mielke, Z., & Haupa, K. (2018). Structural and Spectroscopic Characterization of DMF Complexes with Nitrogen, Carbon Dioxide, Ammonia and Water. Infrared Matrix Isolation and Theoretical Studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 190, 423–432.Search in Google Scholar
Shastri, A., Das, A. K., Krishnakum, S., Singh, P. J., & Sekhar, B. N. R. (2017). Spectroscopy of N, N-Dimethylformamide in the VUV and IR Regions: Experimental and Computational Studies. The Journal of Chemical Physics, 147, 224305.Search in Google Scholar
Liu, B., & Bazan, G. C. (2007). Tetrahydrofuran Activates Fluorescence Resonant Energy Transfer from a Cationic Conjugated Polyelectrolyte to Fluorescein-Labeled DNA in Aqueous Media. Chemistry: An Asian Journal, 2 (4), 499–504.Search in Google Scholar
Nawrocki, P. R., & Sørensen, T. J. (2023). Optical Spectroscopy as a Tool for Studying the Solution Chemistry of Neodymium (iii). Physical Chemistry Chemical Physics, 25, 19300–19336.Search in Google Scholar
Reszka, K., Kolodziejczyk, P., & Lown, J. W. (1988). Photosensitization by Antitumor Agents. 5. Daunorubicin-Photosensitized Oxidation of NAD (P)H in Aqueous and N, N-Dimethylformamide/Aqueous Solutions – An Electron Paramagnetic Resonance Study. Free Radical Biology and Medicine, 5 (2), 63–70.Search in Google Scholar
Hunold, J., Eisermann, J., Brehm, M., & Hinderberger, D. (2020). Characterization of Aqueous Lower-Polarity Solvation Shells Around Amphiphilic 2,2,6,6-Tetramethylpiperidine-1-oxyl Radicals in Water. Journal of Physical Chemistry B, 124 (39), 8601–8609.Search in Google Scholar
Dembek, M., & Bocian, S. (2020). Pure Water as a Mobile Phase in Liquid Chromatography Techniques. Trends in Analytical Chemistry, 123, 115793.Search in Google Scholar
Clifford, M. J., & Eastwood, D. (2004). Design of a Novel Passive Solar Tracker. Solar Energy, 77 (3), 269–280.Search in Google Scholar
Sanganal, S. K., Kulkarni, G. B., & Karegoudar, T. B. (2013). Development and Validation of High Perfomance Liquid Chromatographic Analysis of Residual N, N-Dimethylformamide in Spent Medium after Biodegradation by Paracoccus denitrificans SD1. ISRN Chromatography 2013, 1–6.Search in Google Scholar
Góra, R., Hutta, M., & Rohárik, P. (2012). Characterization and Analysis of Soil Humic Acids by Off-Line Combination of Wide-Pore Octadecylsilica Column Reverse Phase High Performance Liquid Chromatography with Narrow Bore Column Size-Exclusion Chromatography and Fluorescence Detection. Journal of Chromatography A, 1220, 44–49.Search in Google Scholar
Aliaj, F., Bytyqi-Damoni, A., & Syla, N. (2016). Density and Refractive Index Study of the Ternary System Benzene-Ethanol-Hexane. AIP Conference Proceedings, 1722, 290015.Search in Google Scholar
Moosavi, M., & Rostami, A. A. (2016). Densities, Viscosities, Refractive Indices, and Excess Properties of Aqueous 1,2-Etanediol, 1,3-Propanediol, 1,4-Butanediol, and 1,5-Pentanediol Binary Mixtures. Journal of Chemical & Engineering Data, 62 (1), 156–168.Search in Google Scholar
El-Dossoki, F. I. (2007). Refractive Index and Density Measurements for Selected Binary Protic-Protic, Aprotic-Aprotic, and Aprotic-Protic Systems at Temperatures from 298.15 K to 308.15 K. JCCS, 54 (5), 1129–1137.Search in Google Scholar
Mohammadi, L., & Omrani, A. (2017). Density, Refractive Index, and Excess Properties of Sulfolane and Alkanediols Binary Mixtures at Different Temperatures. Journal of Thermal Analysis and Calorimetry, 131 (3).Search in Google Scholar
Komudzińska, M., Tyczyńska, M., Jóźwiak, M., Burakowski, A., & Gliński, J. (2020). Volumetric, Acoustic and Thermal Properties of Aqueous N, N-Dimethylformamide System. Effect of Temperature and Composition. Journal of Molecular Liquids, 300, 112321.Search in Google Scholar
Nayak, J. N., Aralaguppi, M. I., Kumar Naidu, B. V., & Aminabhavi, T. M. (2004). Thermodynamic Properties of Water + Tetrahydrofuran and Water + 1,4-Dioxane Mixtures at (303.15, 313.15, and 323.15) K. Journal of Chemical & Engineering Data, 49 (3), 468–474.Search in Google Scholar
Razzokov, D., Ismailova, O. B., Mamatkulov, Sh. I., Trunilina, O. V., & Kokhkharov, A. M. (2014). Heteromolecular Structures in Aqueous Solutions of Dimethylformamide and Tetrahydrofuran, According to Molecular Dynamics Data. Russian Journal of Physical Chemistry A, 88, 1500–1506.Search in Google Scholar
Katayama, M., & Ozutsumi, K. (2008). The Number of Water-Water Hydrogen Bonds in Water-Tetrahydrofuran and Water-Acetone Binary Mixtures Determined by Means of X-Ray Scattering. Journal of Solution Chemistry, 37 (6), 841–856.Search in Google Scholar
Jones, G., & Talley, S. K. (1933). The Viscosity of Aqueous Solutions as a Function of the Concentration. Journal of the American Chemical Society, 55 (2), 624–642.Search in Google Scholar
Sharma, A., Kaur, S., Mahajan, C. G., Tripathi, S. K., & Saini, S. S. G. (2007). Fourier Transform Infrared Spectral Study of N, N′-Dimethylformamide-Water-Rhodamine 6G Mixture. Molecular Physics, 105 (1), 117–123.Search in Google Scholar
Tomikawa, K., Kanno, H., & Kimoto, H. (2004). A Raman Study of Aqueous DMF and DMA Solutions at Low Temperatures. Canadian Journal of Chemistry, 82 (10), 1468–1473.Search in Google Scholar
Gogolinskaya, T. A., Patsaeva, S. V., & Fadeev, V. V. (1986). On the Regularities of Change of the 3100–3700 см−1 Band of Water Raman Scattering in Salt Aqueous Solutions. Doklady Akademii Nauk, 290 (5), 1099–1103.Search in Google Scholar
Cilense, M., Benedetti, A. V., & Vollet, D. R. (1983). Thermodynamic Properties of Liquid Mixtures. II. Dimethylformamide-Water. Thermochima Acta, 63 (2), 151–156.Search in Google Scholar
Burikov, S., Dolenko, T., Patsaeva, S., Starokurov, Y., & Yuzhakov, V. (2010). Raman and IR Spectroscopy Research on Hydrogen Bonding in Water-Ethanol Systems. Molecular Physics, 108 (18), 2427–2436.Search in Google Scholar
Yang, B., Lang, H., Liu, Z., Wang, S., Men, Z., & Sun, C. (2021). Three Stages of Hydrogen Bonding Network in DMF-Water Binary Solution. Journal of Molecular Liquids, 324, 114996.Search in Google Scholar